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What is a log-correlated Gaussian field?

A Gaussian process X (x) on Rd with a log singularity in its covariance:

EX (x)X (y) ∼ − log |x − y |, as x → y .

Doesn’t make sense as an honest random function.
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Examples of log-correlated fields
Let Ak ∼ NC(0, 1) be i.i.d. and

X (θ) =
1

2

∞∑
k=1

1√
k

[
Ake ikθ + A∗ke−ikθ

]
.

Then (formally) EX (θ)X (θ′) = −1
2 log |e iθ − e iθ

′ |.
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Examples of log-correlated fields

Let Bk ∼ N(0, 1) be i.i.d. and for x ∈ (−1, 1)

Y (x) =
∞∑
k=1

√
1

k
BkTk(x),

where Tk(cos θ) = cos kθ. Then EY (x)Y (y) = −1
2 log(2|x − y |).

Let Ck ∼ N(0, 1) be i.i.d. and for x ∈ (−1, 1)

Z (x) =
∞∑
k=0

1√
k + 1

CkUk(x)
√

1− x2,

where Uk(cos θ) = sin(k + 1)θ/ sin θ. Then

EZ (x)Z (y) = − log
|x − y |

1− xy +
√

1− x2
√

1− y2
.
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Examples of log-correlated fields

Let Dk ∼ N(0, 1) be i.i.d., D ⊂ R2 (compact, simply connected) and
∆φk = −λkφk on D (zero Dirichlet bc). GFF: for x ∈ D

W (x) =
∞∑
k=1

Dk√
λk
φk(x),

Again EW (x)W (y) = GD(x , y) ∼ − log |x − y | as x → y .

All of these series converge almost surely in suitable spaces of
generalized functions (e.g. Sobolev spaces) and one can make precise
sense of everything above.

Many other ways of defining log-correlated fields exist.
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Log-correlated fields in RMT (and other areas)

Moral of the story: most common CLTs for linear statistics in RMT
give rise to log-correlated objects. For nice enough f

N∑
j=1

f (λj)−
N∑
j=1

Ef (λj)
d→ N (0, σ2f ).

CLTs hold for a large class of models:
I Diaconis and Shahshahani 94, for the CUE.
I Johansson 98, for 1d (polynomial one cut regular) β-ensembles.
I Rider and Virag 06, Ginibre ensemble.
I Bourgade and Kuan 12, mesoscopic CLT for ζ zeroes.
I Borodin, Gorin, and Guionnet 15, discrete β-ensembles.
I Moll 15, models for random partitions.
I 2d β-ensembles? big picture?

1

ZN,β

∏
i<j

|λi − λj |βe−N
β
2

∑N
j=1 V (λj )
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Characteristic polynomial of the CUE

Let UN ∼ CUE (N), and

XN(θ) = log | det(I − e−iθUN)|

= −1

2

∞∑
j=1

1√
j

[
e−ijθ

TrU j
N√

j
+ e ijθ

TrU−jN√
j

]
.

Theorem (Hughes, Keating, and O’Connell 2001)

As N →∞, XN
d→ X (in a suitable space).

Similar result for the imaginary part of log det(I − e−iθUN).

One of the critical ingredients: the CLT of Diaconis and Shahshahani.
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Characteristic polynomial of the GUE

Let HN ∼ GUE (N) (random Hermitian matrix, density ∝ e−2NTrH2
N )

and for x ∈ (−1, 1).

YN(x) = log | det(xI − HN)|.

Theorem (Fyodorov, Khoruzhenko, and Simm 13)

YN(x)− EYN(x)
d→ Y (x) (in a suitable space).

One of the critical ingredients: Johansson’s CLT.

The imaginary part of log det(xI − HN) is essentially the eigenvalue
counting function and converges to Z after centering.
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Characteristic polynomial of the Ginibre ensemble
Let GN be a N × N complex Ginibre matrix (density ∝ e−NTrG∗NGN ).

WN(z) = log | det(zI − GN)|, |z | < 1.

Theorem (Rider and Virag 06)

As N →∞, WN(z)− EWN(z) converges to a Gaussian field with
covariance −1

2 log |z − w |.
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The eigenvalue fluctuation field for the GUE

Idea: look at λj − Eλj ”globally”.

Let σ(x) = 2
π

√
1− x2 and for x ∈ (0, 1)

x =

∫ γ(x)

−1
σ(y)dy .

It turns out that for x ∈ (0, 1) (in the sense of generalized functions)

λbNxc ≈ γ(x) +
1

Nπσ(γ(x))
Z (γ(x))

Ingredients: Johansson’s CLT and eigenvalue rigidity.

Similar result for the Plancherel measure due to Kerov (90s).
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What’s the big picture?

Do these objects give rise to log-correlated fields for all (one cut
regular) β-ensembles?

How about Wigner matrices, discrete models, ζ-function, log-gases in
d ≥ 3, ...?

What’s the big picture?

One guess for a universality class: random analytic functions whose
zeroes repel each other like a log-gas on a suitable scale.
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Gaussian multiplicative chaos

It turns out one can make sense of things like

eγX (θ)− γ
2

2
EX (θ)2 .

Random measures - describe the ”geometry” of X .

Theorem (W 14)

Let UN ∼ CUE (N), and 0 < γ <
√

2. Then

| det(e iθI − UN)|γ

E| det(e iθI − UN)|γ
d→ eγX (θ)− γ

2

2
EX (θ)2

Similar results for a discrete CUE (W 15) and GUE (Berestycki, W,
and Wong 16).
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Gaussian multiplicative chaos

Define

XN,M(θ) = −1

2

M∑
j=1

1√
j

(
e−ijθ

TrU j
N√

j
+ e ijθ

TrU−jN√
j

)

Exponential moments can be studied asymptotically with RHP
methods (Deift, Its, Krasovsky; Krasovsky and Claeys, ...)

EeγXN(θ),EeγXN(θ)+γXN(θ
′),EeγXN(θ)+γXN,M(θ′), ...

This lets one show

lim
M→∞

lim
N→∞

E

∣∣∣∣∣
∫ 2π

0

[
eγXN(θ)

EeγXN(θ)
− eγXN,M(θ)

EeγXN,M(θ)

]
dθ

∣∣∣∣∣
2

= 0.
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XN,M(θ) = −1

2

M∑
j=1

1√
j

(
e−ijθ

TrU j
N√

j
+ e ijθ

TrU−jN√
j

)

Exponential moments can be studied asymptotically with RHP
methods (Deift, Its, Krasovsky; Krasovsky and Claeys, ...)
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Gaussian Multiplicative Chaos
Due to Diaconis and Shahshahani’s CLT and the definition of

eγX (θ)− γ
2

2
EX (θ)2 ,

lim
M→∞

lim
N→∞

eγXN,M(θ)− γ
2

2
EXN,M(θ)2 = eγX (θ)− γ

2

2
EX (θ)2 .

How about other values of γ (Berestycki’s approach to GMC seems
promising)?

Universality? How to compute exponential moments for β-ensembles,
Ginibre, ζ-function, ...? How about the eigenvalue counting function
or eigenvalue fluctuations?
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