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What is a log-correlated Gaussian field?

A Gaussian process X(x) on RY with a log singularity in its covariance

EX(x)X(y) ~ —log |x — y|,

as

X =Yy

Doesn’t make sense as an honest random function.
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Examples of log-correlated fields
Let Ax ~ Ng(0,1) be i.i.d. and

X(0) =

l\)ll—l

= 1
27k
Then (formally) EX(0)X(¢') =

[ ko _i_A;s;e—ikG} '

—21logle —

e"(’/].
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Examples of log-correlated fields

o Let By ~ N(0,1) be i.i.d. and for x € (—1,1)

Y(X) = g \/%Bk Tk(X),

where Ti(cosf) = coskf. Then EY(x)Y(y) = —3 log(2|x — y|).
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Examples of log-correlated fields

o Let By ~ N(0,1) bei.i.d. and for x € (—1,1)

Y(x) = g:l \/%Bk Te(x), J

where Ti(cosf) = coskf. Then EY(x)Y(y) = —3 log(2|x — y|).
o Let C, ~ N(0,1) bei.i.d. and for x € (—1,1)

CkUk( )\/1—X2, J

S e

where Uy (cosf) = sin(k +1)8/sinf. Then

Ix —y|

1—xy+vV1—x2/1—y2

EZ(x)Z(y) = —log
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Examples of log-correlated fields

o Let Dy ~ N(0,1) be i.i.d., D C R? (compact, simply connected) and
A¢y = —A\kpk on D (zero Dirichlet bc). GFF: for x € D

_Sm,
W(X)_;\/)\—kqsk( )7

Again EW(x)W(y) = Gp(x,y) ~ —log|x — y| as x — y.
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A¢y = —A\kpk on D (zero Dirichlet bc). GFF: for x € D

0o Dy
W(x) =) —=o(x),

Again EW(x)W(y) = Gp(x,y) ~ —log|x — y| as x — y.

@ All of these series converge almost surely in suitable spaces of
generalized functions (e.g. Sobolev spaces) and one can make precise
sense of everything above.
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Examples of log-correlated fields

o Let Dy ~ N(0,1) be i.i.d., D C R? (compact, simply connected) and
A¢y = —A\kpk on D (zero Dirichlet bc). GFF: for x € D

0o Dy
W(x) =) —=o(x),

Again EW(x)W(y) = Gp(x,y) ~ —log|x — y| as x — y.

@ All of these series converge almost surely in suitable spaces of
generalized functions (e.g. Sobolev spaces) and one can make precise
sense of everything above.

@ Many other ways of defining log-correlated fields exist.
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Log-correlated fields in RMT (and other areas)

@ Moral of the story: most common CLTs for linear statistics in RMT
give rise to log-correlated objects. For nice enough f

N
> ) ZIEf ) % N(0,02).
j=1
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Log-correlated fields in RMT (and other areas)

@ Moral of the story: most common CLTs for linear statistics in RMT
give rise to log-correlated objects. For nice enough f

N
> ) ZEf ) % N(0,52).
j=1

@ CLTs hold for a large class of models:
» Diaconis and Shahshahani 94, for the CUE.
Johansson 98, for 1d (polynomial one cut regular) S-ensembles.
Rider and Virag 06, Ginibre ensemble.
Bourgade and Kuan 12, mesoscopic CLT for { zeroes.
Borodin, Gorin, and Guionnet 15, discrete 3-ensembles.
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vV VY VY VY VY

1 H I\ — )\j|ﬂe*N§ SNV

N, i<j
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Characteristic polynomial of the CUE

e Let Uy ~ CUE(N), and
Xn(8) = log | det(l — e " Uy)|
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Characteristic polynomial of the CUE

e Let Uy ~ CUE(N), and
Xn(0) = log | det(/ — e~ Uy)|

:_lii o Uy e TUN |
22

Theorem (Hughes, Keating, and O’Connell 2001)

As N — 00, Xy 5 X (in a suitable space).
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Theorem (Hughes, Keating, and O’Connell 2001)

As N — 00, Xy 5 X (in a suitable space).

o Similar result for the imaginary part of logdet(/ — e~ Uy).
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e Let Uy ~ CUE(N), and

Xn(8) = log | det(l — e " Uy)|

__1 i L oDy e DUy
22

Theorem (Hughes, Keating, and O’Connell 2001)

As N — 00, Xy 5 X (in a suitable space).

o Similar result for the imaginary part of logdet(/ — e~/ Uy).
@ One of the critical ingredients: the CLT of Diaconis and Shahshahani.
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Characteristic polynomial of the GUE

o Let Hy ~ GUE(N) (random Hermitian matrix, density oc e 2NTrHR)
1

and for x € (—1,1).

Yn(x) = log | det(x/ — Hy)|. J
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Characteristic polynomial of the GUE

o Let Hy ~ GUE(N) (random Hermitian matrix, density oc e 2NTrHR)
and for x € (—1,1).
Yn(x) = log | det(x/ — Hy)|. J

Theorem (Fyodorov, Khoruzhenko, and Simm 13)

Yn(x) —EYn(x) LN Y (x) (in a suitable space).

@ One of the critical ingredients: Johansson's CLT.

@ The imaginary part of logdet(x/ — Hy) is essentially the eigenvalue
counting function and converges to Z after centering.
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Characteristic polynomial of the Ginibre ensemble

Let Gy be a N x N complex Ginibre matrix (density oc e "NTrCnCN),
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Characteristic polynomial of the Ginibre ensemble

Let Gy be a N x N complex Ginibre matrix (density oc e "NTrCnCN),

Wpn(z) = log|det(z/ — Gy)|, |z| <1. J
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Characteristic polynomial of the Ginibre ensemble

Let Gy be a N x N complex Ginibre matrix (density oc e "NTrCnCN),

Wn(z) = log|det(zl — Gy)|, |z] < 1. J

Theorem (Rider and Virag 06)

As N — oo, Wn(z) — EWp(z) converges to a Gaussian field with
covariance —% log |z — w|.
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The eigenvalue fluctuation field for the GUE

@ Idea: look at \; — [E); "globally”.
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The eigenvalue fluctuation field for the GUE

Idea: look at A\; — EA; "globally”.
Let o(x) = 2v/1 — x2 and for x € (0,1)

x = /_Z(X) o(y)dy. J

@ It turns out that for x € (0,1) (in the sense of generalized functions)

Nrmo(y(x))

Ingredients: Johansson’s CLT and eigenvalue rigidity.
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Idea: look at A\; — EA; "globally”.
Let o(x) = 2v/1 — x2 and for x € (0,1)

x = /_Z(X) o(y)dy. J

@ It turns out that for x € (0,1) (in the sense of generalized functions)

Nrmo(y(x))

Ingredients: Johansson’s CLT and eigenvalue rigidity.

A 1(3) + ~——Z(7(x)) J

Similar result for the Plancherel measure due to Kerov (90s).
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What's the big picture?

@ Do these objects give rise to log-correlated fields for all (one cut
regular) -ensembles?
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What's the big picture?

@ Do these objects give rise to log-correlated fields for all (one cut
regular) -ensembles?

@ How about Wigner matrices, discrete models, {-function, log-gases in
d>3, .7

@ What's the big picture?

@ One guess for a universality class: random analytic functions whose
zeroes repel each other like a log-gas on a suitable scale.
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Gaussian multiplicative chaos

@ It turns out one can make sense of things like

IX(0)-FEX(0)2 |
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Gaussian multiplicative chaos

@ It turns out one can make sense of things like

IX(0)-FEX(0)2 |

@ Random measures - describe the "geometry” of X.

Theorem (W 14)
Let Uy ~ CUE(N), and 0 < v < /2. Then

| det(e®l — Up)|" A AX(0)-LEX(0)?
E|det(e®l — Upn)|"

@ Similar results for a discrete CUE (W 15) and GUE (Berestycki, W,
and Wong 16).
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Gaussian multiplicative chaos
@ Define

Xn,m(0) =

hJI —

v ) »
Z -aTrUfV N eijaTrUNJ
(= Vi Vi
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Gaussian multiplicative chaos
@ Define
1L 1 [ T, Tl
XN,M 0)=—= — | e =+ eV =
O==22 5\ Vi

@ Exponential moments can be studied asymptotically with RHP
methods (Deift, Its, Krasovsky; Krasovsky and Claeys, ...)

Ee?Xn(0) EerXn@)+1Xn(0) e Xn@)+yXnm(@) J
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@ Define
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XN,M 0)=—= — | e =+ eV =
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@ Exponential moments can be studied asymptotically with RHP
methods (Deift, Its, Krasovsky; Krasovsky and Claeys, ...)

Ee?Xn(0) EerXn@)+1Xn(0) e Xn@)+yXnm(@) J

o J
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@ This lets one show
2

lim |lim E
M—o00 N—oo

/27!‘
0

e Xn(6) 7 Xn,m(6)
Een® ~ EaXnm® | 97




Gaussian Multiplicative Chaos
@ Due to D2iaconis and Shahshahani's CLT and the definition of
X (0)—FEX(0)?

2 2
lim lim eNm(@O-FEXum(0) — 7X(0)—FEX(6)* J
M— 00 N—o0
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@ How about other values of v (Berestycki's approach to GMC seems
promising)?
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