Log-correlated Gaussian fields and Random matrix theory

Christian Webb

Aalto University, Finland

Extrema of logarithmically correlated processes, characteristic polynomials, and the Riemann zeta function, May 9, 2016
What is a log-correlated Gaussian field?

A Gaussian process $X(x)$ on \mathbb{R}^d with a log singularity in its covariance:

$$\mathbb{E}X(x)X(y) \sim -\log |x - y|, \quad \text{as} \quad x \to y.$$

Doesn't make sense as an honest random function.
Examples of log-correlated fields

Let $A_k \sim N_{\mathbb{C}}(0, 1)$ be i.i.d. and

$$X(\theta) = \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}} \left[A_k e^{ik\theta} + A_k^* e^{-ik\theta} \right].$$

Then (formally) $\mathbb{E} X(\theta) X(\theta') = -\frac{1}{2} \log |e^{i\theta} - e^{i\theta'}|.$
Examples of log-correlated fields

- Let $B_k \sim N(0, 1)$ be i.i.d. and for $x \in (-1, 1)$

$$Y(x) = \sum_{k=1}^{\infty} \sqrt{\frac{1}{k}} B_k T_k(x),$$

where $T_k(\cos \theta) = \cos k\theta$. Then $\mathbb{E} Y(x) Y(y) = -\frac{1}{2} \log(2|x - y|)$.
Examples of log-correlated fields

- Let $B_k \sim \mathcal{N}(0, 1)$ be i.i.d. and for $x \in (-1, 1)$

$$
Y(x) = \sum_{k=1}^{\infty} \sqrt{\frac{1}{k}} B_k T_k(x),
$$

where $T_k(\cos \theta) = \cos k \theta$. Then $\mathbb{E} Y(x) Y(y) = -\frac{1}{2} \log(2|x - y|)$.

- Let $C_k \sim \mathcal{N}(0, 1)$ be i.i.d. and for $x \in (-1, 1)$

$$
Z(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{k + 1}} C_k U_k(x) \sqrt{1 - x^2},
$$

where $U_k(\cos \theta) = \sin(k + 1) \theta / \sin \theta$. Then

$$
\mathbb{E} Z(x) Z(y) = -\log \frac{|x - y|}{1 - xy + \sqrt{1 - x^2} \sqrt{1 - y^2}}.
$$
Examples of log-correlated fields

- Let $D_k \sim N(0, 1)$ be i.i.d., $D \subset \mathbb{R}^2$ (compact, simply connected) and $\Delta \phi_k = -\lambda_k \phi_k$ on D (zero Dirichlet bc). GFF: for $x \in D$

$$W(x) = \sum_{k=1}^{\infty} \frac{D_k}{\sqrt{\lambda_k}} \phi_k(x),$$

Again $\mathbb{E} W(x) W(y) = G_D(x, y) \sim -\log |x - y|$ as $x \to y$.
Examples of log-correlated fields

- Let $D_k \sim N(0, 1)$ be i.i.d., $D \subset \mathbb{R}^2$ (compact, simply connected) and $\Delta \phi_k = -\lambda_k \phi_k$ on D (zero Dirichlet bc). GFF: for $x \in D$

$$W(x) = \sum_{k=1}^{\infty} \frac{D_k}{\sqrt{\lambda_k}} \phi_k(x),$$

Again $\mathbb{E} W(x) W(y) = G_D(x, y) \sim -\log |x - y|$ as $x \to y$.

- All of these series converge almost surely in suitable spaces of generalized functions (e.g. Sobolev spaces) and one can make precise sense of everything above.
Examples of log-correlated fields

- Let $D_k \sim N(0, 1)$ be i.i.d., $D \subset \mathbb{R}^2$ (compact, simply connected) and $\Delta \phi_k = -\lambda_k \phi_k$ on D (zero Dirichlet bc). GFF: for $x \in D$

\[
W(x) = \sum_{k=1}^{\infty} \frac{D_k}{\sqrt{\lambda_k}} \phi_k(x),
\]

Again $\mathbb{E} W(x) W(y) = G_D(x, y) \sim -\log |x - y|$ as $x \to y$.

- All of these series converge almost surely in suitable spaces of generalized functions (e.g. Sobolev spaces) and one can make precise sense of everything above.

- Many other ways of defining log-correlated fields exist.
Log-correlated fields in RMT (and other areas)

- **Moral of the story:** most common CLTs for linear statistics in RMT give rise to log-correlated objects. For nice enough f

$$\sum_{j=1}^{N} f(\lambda_j) - \sum_{j=1}^{N} \mathbb{E} f(\lambda_j) \xrightarrow{d} \mathcal{N}(0, \sigma_f^2).$$
Log-correlated fields in RMT (and other areas)

- **Moral of the story:** most common CLTs for linear statistics in RMT give rise to log-correlated objects. For nice enough f

\[
\sum_{j=1}^{N} f(\lambda_j) - \sum_{j=1}^{N} \mathbb{E}f(\lambda_j) \xrightarrow{d} \mathcal{N}(0, \sigma_f^2).
\]

- CLTs hold for a large class of models:
 - Diaconis and Shahshahani 94, for the CUE.
Log-correlated fields in RMT (and other areas)

- **Moral of the story:** Most common CLTs for linear statistics in RMT give rise to log-correlated objects. For nice enough f

\[
\sum_{j=1}^{N} f(\lambda_j) - \sum_{j=1}^{N} \mathbb{E}f(\lambda_j) \xrightarrow{d} \mathcal{N}(0, \sigma_f^2).
\]

- CLTs hold for a large class of models:
 - Diaconis and Shahshahani 94, for the CUE.
 - Johansson 98, for 1d (polynomial one cut regular) β-ensembles.
 - Rider and Virag 06, Ginibre ensemble.
 - Bourgade and Kuan 12, mesoscopic CLT for ζ zeroes.
 - Borodin, Gorin, and Guionnet 15, discrete β-ensembles.
 - Moll 15, models for random partitions.
 - 2d β-ensembles? big picture?
Log-correlated fields in RMT (and other areas)

- **Moral of the story:** most common CLTs for linear statistics in RMT give rise to log-correlated objects. For nice enough f

\[
\sum_{j=1}^{N} f(\lambda_j) - \sum_{j=1}^{N} \mathbb{E} f(\lambda_j) \xrightarrow{d} \mathcal{N}(0, \sigma_f^2).
\]

- CLTs hold for a large class of models:
 - Diaconis and Shahshahani 94, for the CUE.
 - Johansson 98, for 1d (polynomial one cut regular) β-ensembles.
 - Rider and Virag 06, Ginibre ensemble.
Log-correlated fields in RMT (and other areas)

- **Moral of the story:** most common CLTs for linear statistics in RMT give rise to log-correlated objects. For nice enough f

\[
\sum_{j=1}^{N} f(\lambda_j) - \sum_{j=1}^{N} \mathbb{E}f(\lambda_j) \xrightarrow{d} \mathcal{N}(0, \sigma_f^2).
\]

- CLTs hold for a large class of models:
 - Diaconis and Shahshahani 94, for the CUE.
 - Johansson 98, for 1d (polynomial one cut regular) β-ensembles.
 - Rider and Virag 06, Ginibre ensemble.
 - Bourgade and Kuan 12, mesoscopic CLT for ζ zeroes.
Log-correlated fields in RMT (and other areas)

- **Moral of the story:** most common CLTs for linear statistics in RMT give rise to log-correlated objects. For nice enough f

 $$\sum_{j=1}^{N} f(\lambda_j) - \sum_{j=1}^{N} \mathbb{E} f(\lambda_j) \xrightarrow{d} \mathcal{N}(0, \sigma_f^2).$$

- **CLTs hold for a large class of models:**
 - Diaconis and Shahshahani 94, for the CUE.
 - Johansson 98, for 1d (polynomial one cut regular) β-ensembles.
 - Rider and Virag 06, Ginibre ensemble.
 - Bourgade and Kuan 12, mesoscopic CLT for ζ zeroes.
 - Borodin, Gorin, and Guionnet 15, discrete β-ensembles.
Log-correlated fields in RMT (and other areas)

- **Moral of the story**: most common CLTs for linear statistics in RMT give rise to log-correlated objects. For nice enough f

$$
\sum_{j=1}^N f(\lambda_j) - \sum_{j=1}^N \mathbb{E} f(\lambda_j) \xrightarrow{d} \mathcal{N}(0, \sigma_f^2).
$$

- CLTs hold for a large class of models:
 - Diaconis and Shahshahani 94, for the CUE.
 - Johansson 98, for 1d (polynomial one cut regular) β-ensembles.
 - Rider and Virag 06, Ginibre ensemble.
 - Bourgade and Kuan 12, mesoscopic CLT for ζ zeroes.
 - Borodin, Gorin, and Guionnet 15, discrete β-ensembles.
 - Moll 15, models for random partitions.
Log-correlated fields in RMT (and other areas)

- **Moral of the story:** most common CLTs for linear statistics in RMT give rise to log-correlated objects. For nice enough f

 \[
 \sum_{j=1}^{N} f(\lambda_j) - \sum_{j=1}^{N} \mathbb{E} f(\lambda_j) \xrightarrow{d} \mathcal{N}(0, \sigma_f^2).
 \]

- CLTs hold for a large class of models:
 - Diaconis and Shahshahani 94, for the CUE.
 - Johansson 98, for 1d (polynomial one cut regular) β-ensembles.
 - Rider and Virag 06, Ginibre ensemble.
 - Bourgade and Kuan 12, mesoscopic CLT for ζ zeroes.
 - Borodin, Gorin, and Guionnet 15, discrete β-ensembles.
 - Moll 15, models for random partitions.
 - $2d \beta$-ensembles? big picture?
Log-correlated fields in RMT (and other areas)

- **Moral of the story:** most common CLTs for linear statistics in RMT give rise to log-correlated objects. For nice enough f

$$\sum_{j=1}^{N} f(\lambda_j) - \sum_{j=1}^{N} \mathbb{E} f(\lambda_j) \xrightarrow{d} \mathcal{N}(0, \sigma^2 f).$$

- CLTs hold for a large class of models:
 - Diaconis and Shahshahani 94, for the CUE.
 - Johansson 98, for 1d (polynomial one cut regular) β-ensembles.
 - Rider and Virag 06, Ginibre ensemble.
 - Bourgade and Kuan 12, mesoscopic CLT for ζ zeroes.
 - Borodin, Gorin, and Guionnet 15, discrete β-ensembles.
 - Moll 15, models for random partitions.
 - 2d β-ensembles? big picture?

$$\frac{1}{Z_{N,\beta}} \prod_{i<j} |\lambda_i - \lambda_j|^\beta e^{-N \frac{\beta}{2} \sum_{j=1}^{N} V(\lambda_j)}$$
Characteristic polynomial of the CUE

Let \(U_N \sim CUE(N) \), and

\[
X_N(\theta) = \log | \det(I - e^{-i\theta} U_N) | \\
= -\frac{1}{2} \sum_{j=1}^{\infty} \frac{1}{\sqrt{j}} \left[e^{-ij\theta} \frac{\text{Tr} U_N^j}{\sqrt{j}} + e^{ij\theta} \frac{\text{Tr} U_N^{-j}}{\sqrt{j}} \right].
\]
Let $U_N \sim CUE(N)$, and

$$X_N(\theta) = \log |\det(I - e^{-i\theta} U_N)|$$

$$= -\frac{1}{2} \sum_{j=1}^{\infty} \frac{1}{\sqrt{j}} \left[e^{-ij\theta} \frac{\text{Tr} U_N^j}{\sqrt{j}} + e^{ij\theta} \frac{\text{Tr} U_N^{-j}}{\sqrt{j}} \right].$$

Theorem (Hughes, Keating, and O'Connell 2001)

As $N \to \infty$, $X_N \xrightarrow{d} X$ (in a suitable space).
Characteristic polynomial of the CUE

Let $U_N \sim \text{CUE}(N)$, and

$$X_N(\theta) = \log |\det(I - e^{-i\theta} U_N)|$$

$$= - \frac{1}{2} \sum_{j=1}^{\infty} \frac{1}{\sqrt{j}} \left[e^{-ij\theta} \frac{\text{Tr} U_N^j}{\sqrt{j}} + e^{ij\theta} \frac{\text{Tr} U_N^{-j}}{\sqrt{j}} \right].$$

Theorem (Hughes, Keating, and O’Connell 2001)

As $N \to \infty$, $X_N \xrightarrow{d} X$ (in a suitable space).

Similar result for the imaginary part of $\log \det(I - e^{-i\theta} U_N)$.
Characteristic polynomial of the CUE

Let $U_N \sim CUE(N)$, and

$$X_N(\theta) = \log |\det(I - e^{-i\theta} U_N)|$$

$$= -\frac{1}{2} \sum_{j=1}^{\infty} \frac{1}{\sqrt{j}} \left[e^{-ij\theta} \frac{\text{Tr} U_N^j}{\sqrt{j}} + e^{ij\theta} \frac{\text{Tr} U_N^{-j}}{\sqrt{j}} \right].$$

Theorem (Hughes, Keating, and O’Connell 2001)

As $N \to \infty$, $X_N \xrightarrow{d} X$ (in a suitable space).

- Similar result for the imaginary part of $\log \det(I - e^{-i\theta} U_N)$.
- One of the critical ingredients: the CLT of Diaconis and Shahshahani.
Let $H_N \sim \text{GUE}(N)$ (random Hermitian matrix, density $\propto e^{-2N\text{Tr}H_N^2}$) and for $x \in (-1, 1)$.

$$Y_N(x) = \log |\det(xI - H_N)|.$$
Characteristic polynomial of the GUE

- Let $H_N \sim GUE(N)$ (random Hermitian matrix, density $\propto e^{-2N\text{Tr}H_N^2}$) and for $x \in (-1, 1)$.

\[Y_N(x) = \log |\det(xI - H_N)|. \]

Theorem (Fyodorov, Khoruzhenko, and Simm 13)

\[Y_N(x) - \mathbb{E} Y_N(x) \xrightarrow{d} Y(x) \text{ (in a suitable space)}. \]
Characteristic polynomial of the GUE

- Let $H_N \sim GUE(N)$ (random Hermitian matrix, density $\propto e^{-2N \text{Tr} H_N^2}$) and for $x \in (-1, 1)$.

$$Y_N(x) = \log |\det(xI - H_N)|.$$

Theorem (Fyodorov, Khoruzhenko, and Simm 13)

$$Y_N(x) - \mathbb{E} Y_N(x) \overset{d}{\to} Y(x) \ (in \ a \ suitable \ space).$$

- One of the critical ingredients: Johansson’s CLT.
Characteristic polynomial of the GUE

- Let $H_N \sim GUE(N)$ (random Hermitian matrix, density $\propto e^{-2N\text{Tr}H_N^2}$) and for $x \in (-1, 1)$.

$$Y_N(x) = \log |\det(xI - H_N)|.$$

Theorem (Fyodorov, Khoruzhenko, and Simm 13)

$$Y_N(x) - \mathbb{E} Y_N(x) \xrightarrow{d} Y(x) \text{ (in a suitable space).}$$

- One of the critical ingredients: Johansson’s CLT.
- The imaginary part of $\log \det(xI - H_N)$ is essentially the eigenvalue counting function and converges to Z after centering.
Characteristic polynomial of the Ginibre ensemble

Let G_N be a $N \times N$ complex Ginibre matrix (density $\propto e^{-N \text{Tr}G_N^*G_N}$).

Theorem (Rider and Virag 06)

As $N \to \infty$, $W_N(z) - E_{W_N}(z)$ converges to a Gaussian field with covariance $-\frac{1}{2} \log |z - w|$.
Characteristic polynomial of the Ginibre ensemble

Let G_N be a $N \times N$ complex Ginibre matrix (density $\propto e^{-N \text{Tr} G_N^* G_N}$).

$$W_N(z) = \log |\det(zI - G_N)|, \quad |z| < 1.$$
Characteristic polynomial of the Ginibre ensemble

Let G_N be a $N \times N$ complex Ginibre matrix (density $\propto e^{-N\text{Tr} G_N^* G_N}$).

$$W_N(z) = \log |\det(zI - G_N)|, \quad |z| < 1.$$

Theorem (Rider and Virag 06)

As $N \to \infty$, $W_N(z) - \mathbb{E} W_N(z)$ converges to a Gaussian field with covariance $-\frac{1}{2} \log |z - w|$.
The eigenvalue fluctuation field for the GUE

- Idea: look at $\lambda_j - \mathbb{E}\lambda_j$ "globally".

Ingredients: Johansson's CLT and eigenvalue rigidity.

Similar result for the Plancherel measure due to Kerov (90s).
The eigenvalue fluctuation field for the GUE

- Idea: look at $\lambda_j - \mathbb{E}\lambda_j$ "globally".
- Let $\sigma(x) = \frac{2}{\pi} \sqrt{1 - x^2}$ and for $x \in (0, 1)$

$$x = \int_{-1}^{\gamma(x)} \sigma(y) dy.$$
The eigenvalue fluctuation field for the GUE

- Idea: look at $\lambda_j - \mathbb{E}\lambda_j$ "globally".
- Let $\sigma(x) = \frac{2}{\pi} \sqrt{1 - x^2}$ and for $x \in (0, 1)$

$$x = \int_{-1}^{\gamma(x)} \sigma(y) dy.$$

- It turns out that for $x \in (0, 1)$ (in the sense of generalized functions)

$$\lambda_{\lfloor Nx \rfloor} \approx \gamma(x) + \frac{1}{N\pi \sigma(\gamma(x))} Z(\gamma(x)).$$
The eigenvalue fluctuation field for the GUE

- Idea: look at $\lambda_j - \mathbb{E}\lambda_j$ "globally".
- Let $\sigma(x) = \frac{2}{\pi} \sqrt{1 - x^2}$ and for $x \in (0, 1)$
 \[x = \int_{-1}^{\gamma(x)} \sigma(y) dy. \]

- It turns out that for $x \in (0, 1)$ (in the sense of generalized functions)
 \[\lambda_{\lfloor N x \rfloor} \approx \gamma(x) + \frac{1}{N \pi \sigma(\gamma(x))} Z(\gamma(x)) \]

- Ingredients: Johansson's CLT and eigenvalue rigidity.
The eigenvalue fluctuation field for the GUE

- Idea: look at \(\lambda_j - \mathbb{E}\lambda_j \) "globally".
- Let \(\sigma(x) = \frac{2}{\pi} \sqrt{1 - x^2} \) and for \(x \in (0, 1) \)

\[
x = \int_{-1}^{\gamma(x)} \sigma(y)dy.
\]

- It turns out that for \(x \in (0, 1) \) (in the sense of generalized functions)

\[
\lambda_{[Nx]} \approx \gamma(x) + \frac{1}{N\pi\sigma(\gamma(x))}Z(\gamma(x))
\]

- Ingredients: Johansson’s CLT and eigenvalue rigidity.
- Similar result for the Plancherel measure due to Kerov (90s).
What’s the big picture?

- Do these objects give rise to log-correlated fields for all (one cut regular) β-ensembles?
What’s the big picture?

- Do these objects give rise to log-correlated fields for all (one cut regular) β-ensembles?
- How about Wigner matrices, discrete models, ζ-function, log-gases in $d \geq 3$, ...?
What’s the big picture?

- Do these objects give rise to log-correlated fields for all (one cut regular) β-ensembles?
- How about Wigner matrices, discrete models, ζ-function, log-gases in $d \geq 3$, ...?
- What’s the big picture?
What’s the big picture?

- Do these objects give rise to log-correlated fields for all (one cut regular) β-ensembles?
- How about Wigner matrices, discrete models, ζ-function, log-gases in $d \geq 3$, ...?
- What’s the big picture?
- One guess for a universality class: random analytic functions whose zeroes repel each other like a log-gas on a suitable scale.
Gaussian multiplicative chaos

- It turns out one can make sense of things like

\[e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E} X(\theta)^2}. \]
Gaussian multiplicative chaos

- It turns out one can make sense of things like
 \[e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E}X(\theta)^2} \].

- Random measures - describe the ”geometry” of \(X \).
Gaussian multiplicative chaos

- It turns out one can make sense of things like

\[e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E}X(\theta)^2}. \]

- Random measures - describe the "geometry" of \(X \).

Theorem (W 14)

Let \(U_N \sim \text{CUE}(N) \), and \(0 < \gamma < \sqrt{2} \). Then

\[
\frac{|\det(e^{i\theta}I - U_N)|^{\gamma}}{\mathbb{E}|\det(e^{i\theta}I - U_N)|^{\gamma}} \xrightarrow{d} e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E}X(\theta)^2}
\]

Similar results for a discrete CUE (W 15) and GUE (Berestycki, W, and Wong 16).
Gaussian multiplicative chaos

- It turns out one can make sense of things like
 \[e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E} X(\theta)^2}. \]

- Random measures - describe the "geometry" of \(X \).

Theorem (W 14)

Let \(U_N \sim CUE(N) \), and \(0 < \gamma < \sqrt{2} \). Then

\[
\frac{|\det(e^{i\theta I - U_N})|^{\gamma}}{\mathbb{E}|\det(e^{i\theta I - U_N})|^{\gamma}} \xrightarrow{d} e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E} X(\theta)^2}
\]

- Similar results for a discrete CUE (W 15) and GUE (Berestycki, W, and Wong 16).
Gaussian multiplicative chaos

Define

\[X_{N,M}(\theta) = -\frac{1}{2} \sum_{j=1}^{M} \frac{1}{\sqrt{j}} \left(e^{-ij\theta} \frac{\text{Tr} U_j^j}{\sqrt{j}} + e^{ij\theta} \frac{\text{Tr} U_j^{-j}}{\sqrt{j}} \right) \]
Gaussian multiplicative chaos

Define

\[X_{N,M}(\theta) = -\frac{1}{2} \sum_{j=1}^{M} \frac{1}{\sqrt{j}} \left(e^{-ij\theta} \frac{\text{Tr} U_j^N}{\sqrt{j}} + e^{ij\theta} \frac{\text{Tr} U_{-j}^N}{\sqrt{j}} \right) \]

Exponential moments can be studied asymptotically with RHP methods (Deift, Its, Krasovsky; Krasovsky and Claeys, ...)

[...]

\[\mathbb{E} e^{\gamma X_N(\theta)}, \mathbb{E} e^{\gamma X_N(\theta) + \gamma X_N(\theta')}, \mathbb{E} e^{\gamma X_N(\theta) + \gamma X_{N,M}(\theta')}, ... \]
Gaussian multiplicative chaos

Define

\[X_{N,M}(\theta) = -\frac{1}{2} \sum_{j=1}^{M} \frac{1}{\sqrt{j}} \left(e^{-ij\theta} \frac{\text{Tr} U_j^j}{\sqrt{j}} + e^{ij\theta} \frac{\text{Tr} U_{-j}^N}{\sqrt{j}} \right) \]

Exponential moments can be studied asymptotically with RHP methods (Deift, Its, Krasovsky; Krasovsky and Claeys, ...)

\[E e^{\gamma X_N(\theta)}, E e^{\gamma X_N(\theta) + \gamma X_N(\theta')}, E e^{\gamma X_N(\theta) + \gamma X_{N,M}(\theta')}, ... \]

This lets one show

\[\lim_{M \to \infty} \lim_{N \to \infty} \left| E \int_0^{2\pi} \left[\frac{e^{\gamma X_N(\theta)}}{E e^{\gamma X_N(\theta)}} - \frac{e^{\gamma X_{N,M}(\theta)}}{E e^{\gamma X_{N,M}(\theta)}} \right] d\theta \right|^2 = 0. \]
Gaussian Multiplicative Chaos

- Due to Diaconis and Shahshahani’s CLT and the definition of $e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E} X(\theta)^2}$,

$$
\lim_{M \to \infty} \lim_{N \to \infty} e^{\gamma X_N, M(\theta) - \frac{\gamma^2}{2} \mathbb{E} X_N, M(\theta)^2} = e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E} X(\theta)^2}.
$$
Gaussian Multiplicative Chaos

- Due to Diaconis and Shahshahani’s CLT and the definition of $e^{\gamma X(\theta) - \frac{\gamma^2}{2} E X(\theta)^2}$,

\[
\lim_{M \to \infty} \lim_{N \to \infty} e^{\gamma X_{N,M}(\theta) - \frac{\gamma^2}{2} E X_{N,M}(\theta)^2} = e^{\gamma X(\theta) - \frac{\gamma^2}{2} E X(\theta)^2}.
\]

- How about other values of γ (Berestycki’s approach to GMC seems promising)?
Gaussian Multiplicative Chaos

- Due to Diaconis and Shahshahani’s CLT and the definition of $e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E}X(\theta)^2}$,

$$\lim_{M \to \infty} \lim_{N \to \infty} e^{\gamma X_{N,M}(\theta) - \frac{\gamma^2}{2} \mathbb{E}X_{N,M}(\theta)^2} = e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E}X(\theta)^2}.$$

- How about other values of γ (Berestycki’s approach to GMC seems promising)?
- Universality? How to compute exponential moments for β-ensembles, Ginibre, ζ-function, …? How about the eigenvalue counting function or eigenvalue fluctuations?
Gaussian Multiplicative Chaos

Due to Diaconis and Shahshahani’s CLT and the definition of
\[e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E}X(\theta)^2}, \]

\[
\lim_{M \to \infty} \lim_{N \to \infty} e^{\gamma X_{N,M}(\theta) - \frac{\gamma^2}{2} \mathbb{E}X_{N,M}(\theta)^2} = e^{\gamma X(\theta) - \frac{\gamma^2}{2} \mathbb{E}X(\theta)^2}.
\]

- How about other values of \(\gamma \) (Berestycki’s approach to GMC seems promising)?
- Universality? How to compute exponential moments for \(\beta \)-ensembles, Ginibre, \(\zeta \)-function, ...? How about the eigenvalue counting function or eigenvalue fluctuations?

\[\]