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The random matrix model

CUE: The Circular Unitary Ensemble

The unitary group U(n) with the Haar measure;
Eigenvalues on the unit circle; e iθ1 , · · · , e iθn .
Weyl’s integration formula: the joint density of the eigenangles
(θ1, · · · , θn) ∈ [0, 2π]n is:

1
(2π)nn!

∏
j<k

|e iθj − e iθk |2.



The microscopic scale

We consider
Zn(X ) = det

(
Id− U−1

n X
)

= det (Id− U∗nX ) .

(i) Is there a random analytic function arising from the characteristic polynomial
in the n-limit?

(ii) What is the n-limit of

R(α1, · · · , αr ;β1, · · · , βr ) :=
Zn(e2iα1π/n) · · ·Zn(e2iαrπ/n)

Zn(e2iβ1π/n) · · ·Zn(e2iβrπ/n)
;

(iii) Same question for the logarithmic derivative;



The ratios

Expectations for ratios of the form

Zn(e2iα1π) · · ·Zn(e2iαrπ)

Zn(e2iβ1π) · · ·Zn(e2iβrπ)

have been extensively studied by Fyodorov-Strahov,
Borodin-Olshanski-Strahov, Bump-Gamburd, Conrey-Farmer-Zirnbauer,
Conrey-Snaith, etc.
Same thing for the logarithmic derivative (Conrey-Snaith,
Conrey-Farmer-Zirnbauer, Farmer-Gonek-Montgomery)

e2iα1πZ
′

n(e2iα1π)

Zn(e2iα1π)
· · · e

2iαkπZ
′

n(e2iαkπ)

Zn(e2iαkπ)
.



Determinantal structure
If un is distributed according to Haar measure, then one can define, for
1 ≤ p ≤ n, the p-point correlation function ρ(n)

p of the eigenangles, as
follows: for any bounded, measurable function φ from Rp to R,

E

 ∑
1≤j1 6=···6=jp≤n

φ(θ
(n)
j1
, . . . , θ

(n)
jp

)


=

∫
[0,2π)p

ρ(n)
p (t1, . . . , tp)φ(t1, . . . , tp)dt1 . . . dtp.

If the kernel K (n) is defined by

K (n)(t) :=
sin(nt/2)

2π sin(t/2)

then the p-point correlation function is be given by

ρ(n)
p (t1, ..., tn) = det

(
K (n)(tj − tk)

)p
j,k=1 .



Proposition

Let En denote the set of eigenvalues taken in (−π, π] and multiplied by n/2π. Let
Define for y 6= y

′

K (∞)(y , y
′
) =

sin[π(y
′ − y)]

π(y ′ − y)

and
K (∞)(y , y) = 1.

Then there exists a point process E∞ such that for all r ∈ {1, . . . , n}, and for all
measurable and bounded functions F with compact support from Rr to R:

E

 ∑
x1 6=···6=xr∈En

F (x1, . . . , xr )

 −→
n→∞

∫
Rr

F (y1, . . . , yr )ρ
(∞)
r (y1, . . . , yr )dy1 . . . dyr ,

where
ρ(∞)
r (y1, . . . , yr ) = det((K (∞)(yj , yk))1≤j,k≤r ).



Coupling all dimensions

The idea finds its roots in the construction of virtual permutations by Kerov,
Olshanski, Vershik.
Using a coupling by Neretin, Borodin-Olshanski had already obtained the a.s.
convergence of the eigenvalues.
We propose an alternative probabilistic construction which contains both
constructions of virtual transformations and which provides a.s. convergence
for both eigenvalues and eigenvectors with a good control on error terms.



Complex Reflections

We endow Cn with the scalar product: 〈x , y〉 =
∑n

k=1 xk ȳk .
A reflection is a unitary transformation such that r such that it is the identity
or the rank of Id − r is 1.
Every reflection can be represented as:

r(x) = x − (1− α)
〈x , a〉
〈a, a〉

a,

where a is some vector and α is an element of the unit circle.
Given two distinct unit vectors e and m , there exists a unique complex
reflection r such that r(e) = m and it is given by

r(x) = x − 〈x ,m − e〉
1− 〈e,m〉

(m − e).



Constructing virtual isometries (un)n≥1

The sequence (un)n≥1 can be constructed in the following way (BNN):
1 One considers a sequence (xn)x≥1 of independent random vectors, xn being

uniform on the unit sphere of Cn.
2 Almost surely, for all n ≥ 1, xn is different from the last basis vector en of Cn,

which implies that there exists a unique complex reflection rn ∈ U(n) such
that rn(en) = xn and In − rn has rank one.

3 We define (un)n≥1 by induction as follows: u1 = x1 and for all n ≥ 2,

un = rn

(
un−1 0
0 1

)
.

4 We note U∞ := {(un)n≥1} the space of virtual isometries. We define on U∞

the measure µ∞ as the projective limite of the µn’s.



A probabilistic approach to the Keating-Snaith
formula

The following identity in law holds (BHNY):

det(I − U) =
n∏

k=1

(
1 + e iθk

√
β1,k−1

)
where are random variables in sight are independent (θk ’s are uniform on
(0, 2π) and β1,k−1 is a beta r.v. with parameters 1 and k − 1).
The weakness of these identities in law is that it seems very hard to say
anything about the characteristic polynomial at evaluated at two or more
points. In particular there is not much hope to build infinite dimensional
objects (i.e. random analytic functions or random operators).
This splitting can be extended to the circular beta ensemble or even to the
Jacobi circular ensemble (through deformed Verblunsky coeffcients).



Convergence of eigenangles

Theorem
(i) (BNN, MNN) There is a sine-kernel point process (yk)k∈Z such that almost

surely,
y

(n)
k ≡ n

2π
θ

(n)
k = yk + O((1 + k2)n−

1
3 +ε),

for all n ≥ 1, |k| ≤ n1/4 and ε > 0, where the implied constant may depend
on (um)m≥1 and ε, but not on n and k .

(ii) (CNN) Almost surely, and uniformly in k and n:

y
(n)
k ≡ n

2π
θ

(n)
k = k + O (log(2 + |k|)) .



Theorem (CNN)

Define

ξn(z) =
Zn(e2izπ/n)

Zn(1)
.

Almost surely and uniformly on compact subsets of C, we have the convergence:

ξn (z)
n→∞−→ ξ∞(z) := e iπz

∏
k∈Z

(
1− z

yk

)
Here, the infinite product is not absolutely convergent. It has to be understood as
the limit of the following product, obtained by regrouping the factors two by two:(

1− z

y0

)∏
k≥1

[(
1− z

yk

)(
1− z

y−k

)]
,

which is absolutely convergent.



Remarks
Functional Equation:

ξn(z) =
Zn(e2izπ/n)

Zn(1)
.

We have the following representation for the characteristic polynomial within
1/n distance of the unit circle:

Zn(e2izπ/n) = Zn(1)× ξn(z).

We have a.s. as n→∞,

2iπ
n

Z
′

n(e2iπz/n)

Zn(1)
→ ξ

′

∞.

Many new non trivial limit theorems follow from this strong convergence (e.g.
limit theorems à la Hejhal):

1√
1/2 log n

(logZ ′n(1)− log log n, logZn(1))→ (NC,NC).



The steps in the proof

We first observe that

ξn (z) = e iπz
∏
k∈Z

(
1− z

y
(n)
k

)
.

Then for any A ≥ 2, and z ∈ K , K a compact set, one has:

∣∣∣∣∣∏
k∈Z

(
1− z

y
(n)
k

)
−
∏
k∈Z

(
1− z

yk

)∣∣∣∣∣ ≤∣∣∣∣∣∣
∏
|k|≤A

(
1− z

y
(n)
k

)
−
∏
|k|≤A

(
1− z

yk

)∣∣∣∣∣∣
+ OK

(
logA
A

)
Then use y

(n)
k → yk almost surely.



Ratios

Proposition (CNN)

Let r ∈ N and αj ∈ C, βj ∈ C but βj /∈ (yk)k∈Z, for all 1 ≤ j ≤ r . Then the
following convergence holds a.s. as n→∞:

Zn(e2iα1π/n) · · ·Zn(e2iαrπ/n)

Zn(e2iβ1π/n) · · ·Zn(e2iβrπ/n)
→ ξ∞(α1) · · · ξ∞(αr )

ξ∞(β1) · · · ξ∞(βr )



The number theory connection

Conjecture

Let ω be a uniform random variable on [0, 1] and T > 0 a real parameter going to
infinity. We conjecture the following convergence in law, uniformly in the
parameter z on every compact set:ζ

(
1
2 + iωT − i2πz

logT

)
ζ
( 1

2 + iωT
) ; z ∈ C

 T→∞−→ (ξ∞(z); z ∈ C)

By taking logarithmic derivatives, it is natural also to conjecture the following
convergence(

−i2π
logT

ζ ′

ζ

(
1
2

+ iωT − i2πz
logT

)
; z ∈ C

)
T→∞−→

(
ξ′∞
ξ∞

(z); z ∈ C
)

on compact sets bounded away from the real line.



Proposition
We have, for z /∈ R,

ξ′∞
ξ∞

(z) = iπ +
∑
k∈Z

1
z − yk

=: iπ +
1

z − y0
+
∞∑
k=1

(
1

z − yk
+

1
z − y−k

)
,

and when the random variable U is fixed:

−i2π
logT

ζ′

ζ

(
1
2
+ iTU − i2πz

logT

)
= iπ +

∑
γ̃

1
z − γ̃ + o(1)

where

γ̃ :=
− logT
2πi

(
ρ− 1

2
− iUT

)
with ρ a zero of ζ. The infinite sum on γ̃ has to be understood as follows:

∑
γ̃

1
z − γ̃ =

1
z − γ̃0

+
∞∑
k=1

(
1

z − γ̃k
+

1
z − γ̃−k

)
,

where (γ̃k)k∈Z are ordered by increasing real part, increasing imaginary part if they have
the same real part, and counted with multiplicity.



Moments of the logarithmic derivative

Proposition

Almost surely, for all z /∈ {yk , k ∈ Z},

ξ′∞(z)

ξ∞(z)
= iπ + lim

A→∞

∑
[yk |<A

1
z − yk

.

Remark
We also have

ξ′n(z)

ξn(z)
= iπ + lim

A→∞

∑
[y

(n)
k |<A

1

z − y
(n)
k

.

From now, we will allow n to be either ∞ or a strictly positive integer, and we will
write by convention y

(∞)
k := yk . Moreover, we define:

∑
|y (n)

k |>A

1

z − y
(n)
k

:=
ξ′n(z)

ξn(z)
− iπ −

∑
[y

(n)
k |≤A

1

z − y
(n)
k

.



Proposition (CNN)

Let K ⊂ C\R be a compact set. Then, there exists CK > 0, depending only on K ,
such that for all p ≥ 0 and for all A ≥ CK (1 + p2 log(2 + p)),

sup
n∈Nt{∞}

E

sup
z∈K

e
p

∣∣∣∣∣∑|y(n)
k
|>A

1
z−y

(n)
k

∣∣∣∣∣
 ≤ 1 +

CKp logA√
A

.

Corollary

For any compact set K of C\R, and for all p ≥ 1, there exists an absolute
constant Cp,K such that:

∀A ≥ 0, sup
z∈K

E

∣∣∣∣∣∣
∑
|yk |>A

1
z − yk

∣∣∣∣∣∣
p

1
p

≤ Cp,K
log(2 + A)√

1 + A
.



Moments of the logarithmic derivative

For fixed z1, z2, . . . , zp /∈ R,

∀p ≥ 1,
ξ′∞
ξ∞

(z1) . . .
ξ′∞
ξ∞

(zp) ∈ Lp,

E
(
ξ′∞
ξ∞

(z1) . . .
ξ′∞
ξ∞

(zp)

)
= lim

A→∞
E

 p∏
j=1

iπ +
∑
|yk |<A

1
zj − yk

 .

The last quantity can be computed thanks to the sine kernel correlation
functions of order less or equal than p, on the segment [−A,A].



First moment

M1(z), z /∈ R:

M1(z) := E
(
ξ′∞
ξ∞

(z)

)

= iπ + lim
A→∞

E

 ∑
|yk |≤A

1
z − yk


= iπ + lim

A→∞

∫
[−A,A]

dy
ρ1(y)

z − y

= iπ (1− sgn (Im(z)))

= i2π1{Im(z)<0}



Second moment

M2(z , z ′) = E
(
ξ′∞
ξ∞

(z)
ξ′∞
ξ∞

(z ′)

)
.

We have

M2(z , z ′) = −4π21Im(z)<0,Im(z′)<0 −
1− e2iπ(z−z′) sgn(Im(z−z′))

(z − z ′)2 1Im(z)Im(z′)<0.

M̃2(z , z ′) := E
(
ξ′∞
ξ∞

(z)
ξ′∞
ξ∞

(z ′)

)
.

We have:

M̃2(z , z ′) = 4π21Im(z)<0,Im(z′)<0 −
1− e2iπ(z−z′) sgn(Im(z−z′))

(z − z ′)2
1Im(z)Im(z′)>0.



Conjecture

In particular:

E

(∣∣∣∣ξ′∞ξ∞ (z)

∣∣∣∣2
)

= 4π21Im(z)<0 +
1− e−4π|Im(z)|

4Im2(z)
.

Conjecture

lim
T→∞

1
log2 T

E
(
ζ ′

ζ

(
1
2

+ iωT +
a

logT

)
ζ ′

ζ

(
1
2

+ iωT +
a′

logT

))
=1Re(a)<0,Re(a′)<0 −

1− e−(a′−a) sgnRe(a′−a)

(a− a′)2 1Re(a)Re(a′)<0

lim
T→∞

1
log2 T

E

(
ζ ′

ζ

(
1
2

+ iωT +
a

logT

)
ζ ′

ζ

(
1
2

+ iωT +
a′

logT

))

=1Re(a)<0,Re(a′)<0 +
1− e−(a+a′) sgnRe(a+a′)(

a + a′
)2 1Re(a)Re(a′)>0



Moments of the ratios

Proposition

For z1, . . . , zk , z ′1, . . . , z
′
k ∈ C\R, and for all n ∈ N t {∞},

E

 k∏
j=1

ξn(z ′j )

ξn(zj)

 <∞

Moreover, for every compact set K in C\R, we have the following convergence,
uniformly in z1, z2, . . . , zk , z

′
1, . . . , z

′
k ∈ K :

E

 k∏
j=1

ξn(z ′j )

ξn(zj)

 −→
n→∞

E

 k∏
j=1

ξ∞(z ′j )

ξ∞(zj)

 .



Theorem

For (z1, . . . , zk) ∈ (C\R)k and (z ′1, . . . , z
′
k) ∈ Ck , such that for 1 ≤ i , j ≤ k ,

zi − z ′j is not an integer multiple of n,

det

(
1

e
i2πzi

n − e
i2πz′

j
n

)k

i,j=1

E

 k∏
j=1

ξn(z ′j )

ξn(zj)

 = det

(
1

e
i2πzi

n − e
i2πz′

j
n

E
(
ξn(z ′j )

ξn(zi )

))k

i,j=1

and moreover:

E
(
ξn(z ′)

ξn(z)

)
=

{
1 if Im(z) > 0

e i2π(z′−z) if Im(z) < 0



Ratios Formula

Theorem
For all z1, . . . , zk , z ′1, . . . , z

′
k ∈ C\R such that zi 6= z ′j for 1 ≤ i , j ≤ n, we have

det

(
1

zi − z ′j

)k

i,j=1

E

 k∏
j=1

ξ∞(z ′j )

ξ∞(zj)

 = det

(
1

zi − z ′j
E
(
ξ∞(z ′j )

ξ∞(zi )

))k

i,j=1

and moreover:

E
(
ξ∞(z ′)

ξ∞(z)

)
=

{
1 if Im(z) > 0

e i2π(z′−z) if Im(z) < 0



Example

We note that
ξ∞(z) = e−2iπz̄ξ∞(z̄).

We get for all z , z ′ /∈ R,

E

[∣∣∣∣ξ∞(z ′)

ξ∞(z)

∣∣∣∣2
]
= e−4πIm(z′−z)1Im(z)<0

(
1+ (1− e−4πIm(z′) sgn(Im(z)))

|z − z ′|2

4Im(z)Im(z ′)

)
.



Conjecture

Let ω be a uniform random variable on [0, 1] and T > 0 a real parameter going to
infinity. Then, for all z1, . . . , zk , z ′1, . . . , z

′
k ∈ C\R, such that zi 6= z ′j for all i , j ,

E

 k∏
j=1

ζ
(

1
2 + iTω − i2πz′j

logT

)
ζ
(

1
2 + iTω − i2πzj

logT

)


T→∞−→ det

(
1

zi − z ′j

)−1

det

(
1Im(zi )>0 + e2iπ(z′j −zi )1Im(zi )<0

zi − z ′j

)k

i,j=1

,

where the last expression is well-defined where the zi and the z ′j are all distinct,
and is extended by continuity to the case where some of the zi or some of the z ′j
are equal.



Fluctuations for the logarithmic derivative

Proposition

For z ∈ C\R, let

F (z) :=
ξ′∞(z)

ξ∞(z)
− 2iπ1Imz<0.

Then, one has the convergence in law:

(LF (Lz))z∈C\R −→
L→∞

(G (z))z∈C\R,

where (G (z))z∈C\R is a centred gaussian process, which admits a holomorphic
version, with covariance structure given, for all z1, z2 /∈ R, by

E[G (z1)G (z2)] = −
1Im(z1)Im(z2)<0

(z2 − z1)2 ,

E[G (z1)G (z2)] = −
1Im(z1)Im(z2)>0

(z2 − z1)2 .


