## Rational approximations to $\zeta$

Keith Ball


This talk describes rational functions approximating $\zeta$ :

$$
\begin{gathered}
\frac{1}{(s-1)}, \quad \frac{s+1}{2(s-1)}, \frac{4 s^{2}+11 s+9}{6(s+3)(s-1)}, \frac{(s+2)\left(3 s^{2}+10 s+11\right)}{4\left(s^{2}+6 s+11\right)(s-1)}, \\
\\
\frac{(s+2)\left(72 s^{3}+490 s^{2}+1193 s+1125\right)}{30\left(3 s^{3}+29 s^{2}+106 s+150\right)(s-1)}, \ldots
\end{gathered}
$$

The small size of $\zeta(1 / 2+i t)$ depends upon cancellation between different Dirichlet terms.

Each coefficient in the rational functions depends upon all the Dirichlet terms so the cancellation is built into the coefficients.

For each integer $m \geq 0$ we define

$$
p_{m}(t)=(1-t)\left(1-\frac{t}{2}\right) \ldots\left(1-\frac{t}{m}\right)
$$

and the coefficients ( $a_{m, j}$ ) by

$$
p_{m}(t)=\sum_{0}^{m}(-1)^{j} a_{m, j} t^{j} .
$$

We then set

$$
F_{m}(s)=\sum_{0}^{m} \frac{a_{m, j} B_{j}}{s+j-1}
$$

and

$$
G_{m}(s)=\sum_{j=0}^{m}(-1)^{j} \frac{a_{m, j}}{s+j-1} .
$$

The rational functions in question are the ratios

$$
\frac{F_{m}(s)}{(s-1) G_{m}(s)} .
$$

For example

$$
F_{3}(s)=\frac{1}{s-1}-\frac{11}{12 s}+\frac{1}{6(s+1)}=\frac{3 s^{2}+10 s+11}{12(s-1) s(s+1)}
$$

and

$$
G_{3}(s)=\frac{1}{s-1}-\frac{11}{6 s}+\frac{1}{s+1}-\frac{1}{6(s+2)}=\frac{s^{2}+6 s+11}{3(s-1) s(s+1)(s+2)} .
$$

The $m^{t h}$ ratio interpolates $\zeta$ at the points $0,-1,-2, \ldots, 1-m$ and has a simple pole with residue 1 at $s=1$.

The graph shows $(s-1) \zeta(s)$ and the ratio $F_{5}(s) / G_{5}(s)$


The sequence converges locally uniformly to $\zeta$, at least to the right of the line $\{s: \Re s=0\}$.

We shall see that

$$
F_{m}(s) \approx h_{m}^{1-s} \Gamma(s) \zeta(s)
$$

and

$$
(s-1) G_{m}(s) \approx h_{m}^{1-s} \Gamma(s)
$$

where $h_{m}$ is the partial sum $\sum_{j=1}^{m} 1 / j$ of the harmonic series.

The rational functions might still be difficult to analyse: what are the coefficients?

Focus on the $F_{m}$ :

$$
\begin{array}{cccc}
F_{0}(s), & F_{1}(s), & F_{2}(s), & F_{3}(s) \\
\frac{1}{(s-1)}, & \frac{s+1}{2(s-1) s}, & \frac{4 s^{2}+11 s+9}{12(s-1) s(s+1)}, & \frac{(s+2)\left(3 s^{2}+10 s+11\right)}{12(s-1) s(s+1)(s+2)}
\end{array}
$$

We have a recurrence relation: for each $m$

$$
(s+m-1) F_{m}(s)=\frac{1}{(m+1)}+(m+1) \sum_{j=1}^{m} \frac{F_{m-j}(s)}{j(j+1)}
$$

Equivalently

$$
\left(1+\frac{s-1}{m}\right) F_{m}(s)=\frac{1}{m(m+1)}+\frac{m+1}{m} \sum_{j=1}^{m} \frac{F_{m-j}(s)}{j(j+1)} .
$$

At each stage we take a weighted average of the previous terms, add a small bit and rotate slightly.

This is a very stable dynamical system.

The dependence of the end result $\zeta$ on $s$ can be very sensitive because $s$ rotates at each step. But for each fixed $s$ we have a very smooth way of getting to $\zeta(s)$.

Here are the first few hundred values of $(n+1) F_{n}(1 / 2-14 i)$.


If we treat the first $m+1$ of these relations as a linear system for the values $F_{0}(s), F_{1}(s), \ldots, F_{m}(s)$ we can express the fact that $F_{m}(s)=0$ by the vanishing of a certain determinant.

The numerator of the $m^{\text {th }}$ function is the determinant of

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \\
\frac{1}{2} & 1 & 0 & 0 & \ldots & 0 \\
\frac{1}{3} & \frac{1}{2} & 1 & 0 & \ldots & 0 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1 & \ldots & 0 \\
\vdots & & & \ddots & \cdots & \vdots \\
\frac{1}{m+1} & \frac{1}{m} & \frac{1}{m-1} & \ldots & \frac{1}{2} & 1
\end{array}\right)+(1-s)\left(\begin{array}{cccccc}
0 & 1 & \frac{1}{2} & \frac{1}{3} & \ldots & \frac{1}{m} \\
0 & 0 & \frac{1}{2} & \frac{1}{3} & \ldots & \frac{1}{m} \\
0 & 0 & 0 & \frac{1}{3} & \ldots & \frac{1}{m} \\
0 & 0 & 0 & 0 & & \vdots \\
\vdots & \vdots & \vdots & & \ldots & \frac{1}{m} \\
0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right) .
$$

So RH can be restated as what looks like a rather conventional spectral problem.

Connes reformulated RH as a statement about the spectrum of an operator acting on an infinite-dimensional function space.

There is a connection between Connes' infinite-dimensional operator and these finite-dimensional ones.

If $\Re s>1$

$$
\begin{aligned}
G_{m}(s) & =\sum_{j=0}^{m}(-1)^{j} \frac{a_{m, j}}{s+j-1}=\sum_{j=0}^{m}(-1)^{j} a_{m, j} \int_{0}^{1} x^{j} x^{s-2} d x \\
& =\int_{0}^{1} p_{m}(x) x^{s-2} d x \\
& p_{m}(x)=(1-x)\left(1-\frac{x}{2}\right) \ldots\left(1-\frac{x}{m}\right) \approx e^{-h_{m} x}
\end{aligned}
$$

so it is no surprise that $G_{m}(s) \approx h_{m}^{1-s} \Gamma(s-1)$.

We want to do something similar for $F_{m}$.

If $\Re s>1$

$$
\begin{aligned}
\int_{0}^{\infty} \frac{y}{1-e^{-y}} e^{-y} y^{s-2} d y & =\int_{0}^{\infty}\left(\sum_{n=1}^{\infty} e^{-n y}\right) y^{s-1} d y \\
& =\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-n y} y^{s-1} d y=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \Gamma(s)
\end{aligned}
$$

So

$$
\begin{aligned}
\Gamma(s) \zeta(s) & =\int_{0}^{\infty} \frac{-\log \left(1-\left(1-e^{-y}\right)\right)}{1-e^{-y}} e^{-y} y^{s-2} d y \\
& =\int_{0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{k+1}\left(1-e^{-y}\right)^{k} e^{-y} y^{s-2} d y
\end{aligned}
$$

$$
\Gamma(s) \zeta(s)=\int_{0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{k+1}\left(1-e^{-y}\right)^{k} e^{-y} y^{s-2} d y
$$

Using a standard formula for Bernoulli numbers we get that for $\Re s>1$

$$
F_{m}(s)=\int_{0}^{1}\left(\sum_{k=0}^{m} \frac{1}{k+1} \sum_{r=0}^{k}\binom{k}{r}(-1)^{r} p_{m}((r+1) x)\right) x^{s-2} d x
$$

If $x$ is close to zero then

$$
\begin{aligned}
\Delta_{m, k}(x) & =\sum_{r=0}^{k}\binom{k}{r}(-1)^{r} p_{m}((r+1) x) \\
& \approx \sum_{r=0}^{k}\binom{k}{r}(-1)^{r} e^{-h_{m}(r+1) x}=\left(1-e^{-h_{m} x}\right)^{k} e^{-h_{m} x}
\end{aligned}
$$

For small values of $x$ the integrand is approximately

$$
\left(\sum_{k=0}^{m} \frac{1}{k+1} e^{-h_{m} x}\left(1-e^{-h_{m} x}\right)^{k}\right) x^{s-2}
$$

If the approximation were good for all $x$ between 0 and 1 then $F_{m}(s)$ would be close to

$$
\begin{aligned}
& \int_{0}^{1} \sum_{k=0}^{m} \frac{1}{k+1} e^{-h_{m} x}\left(1-e^{-h_{m} x}\right)^{k} x^{s-2} d x \\
= & h_{m}^{1-s} \int_{0}^{h_{m}} \sum_{k=0}^{m} \frac{1}{k+1} e^{-y}\left(1-e^{-y}\right)^{k} y^{s-2} d y
\end{aligned}
$$

and the integral converges to $\Gamma(s) \zeta(s)$ as $m \rightarrow \infty$.

We want to show that

$$
h_{m}^{s-1} F_{m}(s) \rightarrow \Gamma(s) \zeta(s)
$$

locally uniformly for $\Re s>0$.

Crossing the pole at $s=1$ is not the problem.

The difficulty is that unless $x$ is very close to 0 , the expressions

$$
\Delta_{m, k}(x)=\sum_{r=0}^{k}\binom{k}{r}(-1)^{r} p_{m}((r+1) x)
$$

involve values of $p_{m}$ at points well outside the interval $[0,1]$.

The graph shows the $\Delta_{m, k}$ for $m=10$.


Lemma 1 (Key Lemma). If $m$ is a non-negative integer, $k$ is any integer and $x \in[0,1]$ then

$$
\Delta_{m, k}(x) \geq 0 .
$$

It is trivial to check that

$$
\sum_{k=0}^{m} \Delta_{m, k}(x)=1
$$

for all $x$, so the $\Delta_{m, k}$ form a partition of unity on $[0,1]$.

After some fairly delicate estimates we get that the ratios

$$
\frac{F_{m}(s)}{(s-1) G_{m}(s)}
$$

converge locally uniformly to $\zeta(s)$ for $\Re s>0$.

My guess is that they do so on the entire complex plane.
Theorem 2 (Convergence).

$$
h_{m}^{s-1}(s-1) F_{m}(s) \rightarrow(s-1) \Gamma(s) \zeta(s)
$$

locally uniformly for $\Re s>0$.

Lemma 1 (Key Lemma). If $m$ is a non-negative integer, $k$ is any integer $k$ and $x \in[0,1]$

$$
\Delta_{m, k}(x) \geq 0 .
$$

The proof of the key lemma involves the introduction of an additional parameter. For each $v$ define

$$
P_{m}(v, x)=(v+1-x)(v+2-x) \ldots(v+m-x)
$$

and

$$
\tilde{\Delta}_{m, k}(v, x)=\sum_{r=0}^{k}\binom{k}{r}(-1)^{r} P_{m}(v,(r+1) x) .
$$

$\tilde{\Delta}_{m, k}(0, x)=m!\Delta_{m, k}(x)$ so the key lemma follows from:

Lemma 3. If $m$ is a non-negative integer, $k$ is an integer, $v \geq 0$ and $0 \leq x \leq 1$ then

$$
\tilde{\Delta}_{m, k}(v, x) \geq 0 .
$$

Proof We use induction on $m$. When $m=0, \tilde{\Delta}_{m, k}(v, x)$ is zero unless $k=0$ in which case it is 1.

We claim that for $m>0$

$$
\tilde{\Delta}_{m, k}(v, x)=(v+1-x) \tilde{\Delta}_{m-1, k}(v+1, x)+k x \tilde{\triangle}_{m-1, k-1}(v+1-x, x)
$$

Then the inductive step is clear because we can assume that $k \geq 0$ and for the given range of $v$ and $x$, the number $v+1-x$ is also at least 0 .

## Estimating the size of $\zeta$

We have that

$$
F_{m}(s)=\int_{0}^{1} f_{m}(x) x^{s-2} d x
$$

where

$$
f_{m}(x)=\sum_{k=0}^{m} \frac{1}{k+1} \Delta_{m, k}(x) .
$$

Numerical evidence indicates that the function $f_{m}\left(x / h_{m}\right)$ differs from $x /\left(e^{x}-1\right)$ by only about $h_{m} / m$ at any point of $\left[0, h_{m}\right]$ and so we expect the ratio

$$
\frac{F_{m}(s)}{(s-1) G_{m}(s)}
$$

to provide a good approximation to $\zeta$ at $s=1 / 2+i t$ as long as $\Gamma(s)$ is as large as $h_{m} / m$.

We expect the ratio

$$
\frac{F_{m}(s)}{(s-1) G_{m}(s)}
$$

to provide a good approximation to $\zeta$ at $s=1 / 2+i t$ as long as $\Gamma(s)$ is as large as $h_{m} / m$.

This happens if $|t|$ is at most a bit less than $\frac{2}{\pi} \log m$.

Rough calculations indicate that the ratio is not too far from $\zeta$ for $t$ all the way up to $\log m$.

There are good reasons to think that $F_{m}(s)$ does not oscillate significantly for $t$ larger than $\log m$.

The connection with Connes' operator

The Toeplitz matrix

$$
L_{m}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \\
\frac{1}{2} & 1 & 0 & 0 & \ldots & 0 \\
\frac{1}{3} & \frac{1}{2} & 1 & 0 & \ldots & 0 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1 & \ldots & 0 \\
\vdots & & & \ddots & \ddots & \vdots \\
\frac{1}{m+1} & \frac{1}{m} & \frac{1}{m-1} & \ldots & \frac{1}{2} & 1
\end{array}\right)
$$

can be thought of as acting on polynomials $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}$ rather than sequences $\left(a_{0}, \ldots, a_{m}\right)$.

It does so by multiplication by the partial sum

$$
\sum_{0}^{m} \frac{x^{j}}{j+1}
$$

of the series for $\frac{-\log (1-x)}{x}$ (followed by truncation back to a polynomial of degree $m$ ).

In this context the upper triangular matrix $U_{m}$ maps a polynomial $q$ of degree $m$ to

$$
\frac{1}{1-x} \int_{x}^{1} \frac{q(t)-q(0)}{t} d t
$$

The operator of Connes is built from a multiplication operator and an integral operator much like these, acting on an infinite-dimensional function space.

