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This talk describes rational functions approximating ζ:

1
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,
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,
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(s+ 2)(72s3 + 490s2 + 1193s+ 1125)
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The small size of ζ(1/2 + it) depends upon cancellation between dif-

ferent Dirichlet terms.

Each coefficient in the rational functions depends upon all the Dirichlet

terms so the cancellation is built into the coefficients.



For each integer m ≥ 0 we define

pm(t) = (1− t)
(

1−
t

2

)
. . .

(
1−

t

m

)
and the coefficients (am,j) by

pm(t) =
m∑
0

(−1)jam,jt
j.

We then set

Fm(s) =
m∑
0

am,jBj

s+ j − 1

and

Gm(s) =
m∑
j=0

(−1)j
am,j

s+ j − 1
.



The rational functions in question are the ratios

Fm(s)

(s− 1)Gm(s)
.

For example

F3(s) =
1

s− 1
−

11

12s
+

1

6(s+ 1)
=

3s2 + 10s+ 11

12(s− 1)s(s+ 1)

and

G3(s) =
1

s− 1
−

11

6s
+

1

s+ 1
−

1

6(s+ 2)
=

s2 + 6s+ 11

3(s− 1)s(s+ 1)(s+ 2)
.

The mth ratio interpolates ζ at the points 0,−1,−2, . . . ,1−m and has

a simple pole with residue 1 at s = 1.



The graph shows (s− 1)ζ(s) and the ratio F5(s)/G5(s)

-4 -3 -2 -1 1 2

0.5

1.0

1.5



The sequence converges locally uniformly to ζ, at least to the right of

the line {s : <s = 0}.

We shall see that

Fm(s) ≈ h1−s
m Γ(s)ζ(s)

and

(s− 1)Gm(s) ≈ h1−s
m Γ(s)

where hm is the partial sum
∑m
j=1 1/j of the harmonic series.



The rational functions might still be difficult to analyse: what are the

coefficients?

Focus on the Fm:

F0(s), F1(s), F2(s), F3(s)

1

(s− 1)
,

s+ 1

2(s− 1)s
,

4s2 + 11s+ 9

12(s− 1)s(s+ 1)
,

(s+ 2)(3s2 + 10s+ 11)

12(s− 1)s(s+ 1)(s+ 2)

We have a recurrence relation: for each m

(s+m− 1)Fm(s) =
1

(m+ 1)
+ (m+ 1)

m∑
j=1

Fm−j(s)

j(j + 1)
.



Equivalently(
1 +

s− 1

m

)
Fm(s) =

1

m(m+ 1)
+
m+ 1

m

m∑
j=1

Fm−j(s)

j(j + 1)
.

At each stage we take a weighted average of the previous terms, add

a small bit and rotate slightly.

This is a very stable dynamical system.

The dependence of the end result ζ on s can be very sensitive because

s rotates at each step. But for each fixed s we have a very smooth

way of getting to ζ(s).



Here are the first few hundred values of (n+ 1)Fn(1/2− 14i).
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If we treat the first m+ 1 of these relations as a linear system for the

values F0(s), F1(s), . . . , Fm(s) we can express the fact that Fm(s) = 0

by the vanishing of a certain determinant.

The numerator of the mth function is the determinant of
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So RH can be restated as what looks like a rather conventional spectral

problem.

Connes reformulated RH as a statement about the spectrum of an

operator acting on an infinite-dimensional function space.

There is a connection between Connes’ infinite-dimensional operator

and these finite-dimensional ones.



If <s > 1

Gm(s) =
m∑
j=0

(−1)j
am,j

s+ j − 1
=

m∑
j=0

(−1)jam,j

∫ 1

0
xjxs−2 dx

=
∫ 1

0
pm(x)xs−2 dx

pm(x) = (1− x)
(

1−
x

2

)
. . .

(
1−

x

m

)
≈ e−hmx

so it is no surprise that Gm(s) ≈ h1−s
m Γ(s− 1).

We want to do something similar for Fm.



If <s > 1

∫ ∞
0

y

1− e−y
e−yys−2 dy =

∫ ∞
0

 ∞∑
n=1

e−ny
 ys−1 dy

=
∞∑
n=1

∫ ∞
0

e−nyys−1 dy =
∞∑
n=1

1

ns
Γ(s).

So

Γ(s)ζ(s) =
∫ ∞

0

− log(1− (1− e−y))

1− e−y
e−yys−2 dy

=
∫ ∞

0

∞∑
k=0

1

k + 1
(1− e−y)k e−yys−2 dy.



Γ(s)ζ(s) =
∫ ∞

0

∞∑
k=0

1

k + 1
(1− e−y)k e−yys−2 dy.

Using a standard formula for Bernoulli numbers we get that for <s > 1

Fm(s) =
∫ 1

0

 m∑
k=0

1

k + 1

k∑
r=0

(k
r

)
(−1)rpm((r + 1)x)

xs−2 dx

If x is close to zero then

∆m,k(x) =
k∑

r=0

(k
r

)
(−1)rpm((r + 1)x)

≈
k∑

r=0

(k
r

)
(−1)re−hm(r+1)x = (1− e−hmx)k e−hmx.



For small values of x the integrand is approximately m∑
k=0

1

k + 1
e−hmx(1− e−hmx)k

xs−2.

If the approximation were good for all x between 0 and 1 then Fm(s)

would be close to∫ 1

0

m∑
k=0

1

k + 1
e−hmx(1− e−hmx)kxs−2 dx

= h1−s
m

∫ hm
0

m∑
k=0

1

k + 1
e−y(1− e−y)kys−2 dy

and the integral converges to Γ(s)ζ(s) as m→∞.



We want to show that

hs−1
m Fm(s)→ Γ(s)ζ(s)

locally uniformly for <s > 0.

Crossing the pole at s = 1 is not the problem.

The difficulty is that unless x is very close to 0, the expressions

∆m,k(x) =
k∑

r=0

(k
r

)
(−1)rpm((r + 1)x)

involve values of pm at points well outside the interval [0,1].



The graph shows the ∆m,k for m = 10.
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Lemma 1 (Key Lemma). If m is a non-negative integer, k is any

integer and x ∈ [0,1] then

∆m,k(x) ≥ 0.

It is trivial to check that
m∑
k=0

∆m,k(x) = 1

for all x, so the ∆m,k form a partition of unity on [0,1].



After some fairly delicate estimates we get that the ratios

Fm(s)

(s− 1)Gm(s)

converge locally uniformly to ζ(s) for <s > 0.

My guess is that they do so on the entire complex plane.

Theorem 2 (Convergence).

hs−1
m (s− 1)Fm(s)→ (s− 1)Γ(s)ζ(s)

locally uniformly for <s > 0.



Lemma 1 (Key Lemma). If m is a non-negative integer, k is any

integer k and x ∈ [0,1]

∆m,k(x) ≥ 0.

The proof of the key lemma involves the introduction of an additional

parameter. For each v define

Pm(v, x) = (v + 1− x)(v + 2− x) . . . (v +m− x)

and

∆̃m,k(v, x) =
k∑

r=0

(k
r

)
(−1)rPm(v, (r + 1)x).

∆̃m,k(0, x) = m!∆m,k(x) so the key lemma follows from:



Lemma 3. If m is a non-negative integer, k is an integer, v ≥ 0 and

0 ≤ x ≤ 1 then

∆̃m,k(v, x) ≥ 0.

Proof We use induction on m. When m = 0, ∆̃m,k(v, x) is zero unless

k = 0 in which case it is 1.

We claim that for m > 0

∆̃m,k(v, x) = (v + 1− x)∆̃m−1,k(v + 1, x) + kx∆̃m−1,k−1(v + 1− x, x).

Then the inductive step is clear because we can assume that k ≥ 0 and

for the given range of v and x, the number v+ 1− x is also at least 0.



Estimating the size of ζ

We have that

Fm(s) =
∫ 1

0
fm(x)xs−2 dx

where

fm(x) =
m∑
k=0

1

k + 1
∆m,k(x).

Numerical evidence indicates that the function fm(x/hm) differs from

x/(ex−1) by only about hm/m at any point of [0, hm] and so we expect

the ratio

Fm(s)

(s− 1)Gm(s)

to provide a good approximation to ζ at s = 1/2 + it as long as Γ(s)

is as large as hm/m.



We expect the ratio

Fm(s)

(s− 1)Gm(s)

to provide a good approximation to ζ at s = 1/2 + it as long as Γ(s)

is as large as hm/m.

This happens if |t| is at most a bit less than 2
π logm.

Rough calculations indicate that the ratio is not too far from ζ for t

all the way up to logm.

There are good reasons to think that Fm(s) does not oscillate signifi-

cantly for t larger than logm.



The connection with Connes’ operator

The Toeplitz matrix

Lm =
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can be thought of as acting on polynomials a0+a1x+a2x
2+· · ·+amxm

rather than sequences (a0, . . . , am).



It does so by multiplication by the partial sum

m∑
0

xj

j + 1

of the series for − log(1−x)
x (followed by truncation back to a polynomial

of degree m).

In this context the upper triangular matrix Um maps a polynomial q of

degree m to

1

1− x

∫ 1

x

q(t)− q(0)

t
dt.

The operator of Connes is built from a multiplication operator and

an integral operator much like these, acting on an infinite-dimensional

function space.


