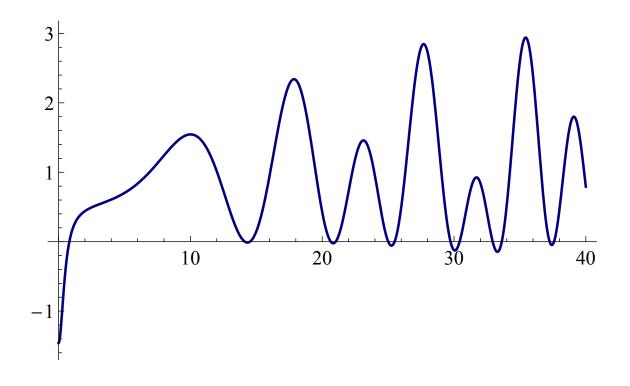
## Rational approximations to $\zeta$

## **Keith Ball**



This talk describes rational functions approximating  $\zeta$ :

$$\frac{1}{(s-1)}$$
,  $\frac{s+1}{2(s-1)}$ ,  $\frac{4s^2+11s+9}{6(s+3)(s-1)}$ ,  $\frac{(s+2)(3s^2+10s+11)}{4(s^2+6s+11)(s-1)}$ ,

$$\frac{(s+2)(72s^3+490s^2+1193s+1125)}{30(3s^3+29s^2+106s+150)(s-1)}, \dots$$

The small size of  $\zeta(1/2+it)$  depends upon cancellation between different Dirichlet terms.

Each coefficient in the rational functions depends upon all the Dirichlet terms so the cancellation is built into the coefficients.

For each integer  $m \ge 0$  we define

$$p_m(t) = (1-t)\left(1-\frac{t}{2}\right)\dots\left(1-\frac{t}{m}\right)$$

and the coefficients  $(a_{m,j})$  by

$$p_m(t) = \sum_{0}^{m} (-1)^j a_{m,j} t^j.$$

We then set

$$F_m(s) = \sum_{0}^{m} \frac{a_{m,j}B_j}{s+j-1}$$

and

$$G_m(s) = \sum_{j=0}^m (-1)^j \frac{a_{m,j}}{s+j-1}.$$

The rational functions in question are the ratios

$$\frac{F_m(s)}{(s-1)G_m(s)}.$$

For example

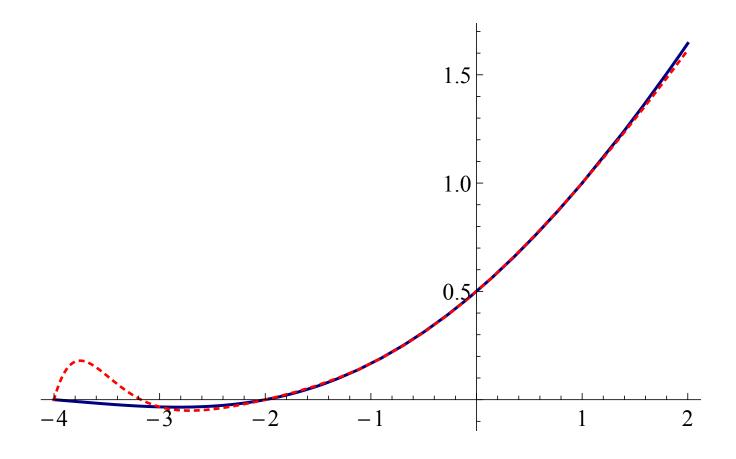
$$F_3(s) = \frac{1}{s-1} - \frac{11}{12s} + \frac{1}{6(s+1)} = \frac{3s^2 + 10s + 11}{12(s-1)s(s+1)}$$

and

$$G_3(s) = \frac{1}{s-1} - \frac{11}{6s} + \frac{1}{s+1} - \frac{1}{6(s+2)} = \frac{s^2 + 6s + 11}{3(s-1)s(s+1)(s+2)}.$$

The  $m^{th}$  ratio interpolates  $\zeta$  at the points  $0, -1, -2, \ldots, 1-m$  and has a simple pole with residue 1 at s=1.

The graph shows  $(s-1)\zeta(s)$  and the ratio  $F_5(s)/G_5(s)$ 



The sequence converges locally uniformly to  $\zeta$ , at least to the right of the line  $\{s: \Re s = 0\}$ .

We shall see that

$$F_m(s) \approx h_m^{1-s} \Gamma(s) \zeta(s)$$

and

$$(s-1)G_m(s) \approx h_m^{1-s}\Gamma(s)$$

where  $h_m$  is the partial sum  $\sum_{j=1}^m 1/j$  of the harmonic series.

The rational functions might still be difficult to analyse: what are the coefficients?

Focus on the  $F_m$ :

$$F_0(s),$$
  $F_1(s),$   $F_2(s),$   $F_3(s)$ 

$$\frac{1}{(s-1)}, \frac{s+1}{2(s-1)s}, \frac{4s^2+11s+9}{12(s-1)s(s+1)}, \frac{(s+2)(3s^2+10s+11)}{12(s-1)s(s+1)(s+2)}$$

We have a recurrence relation: for each m

$$(s+m-1) F_m(s) = \frac{1}{(m+1)} + (m+1) \sum_{j=1}^m \frac{F_{m-j}(s)}{j(j+1)}.$$

Equivalently

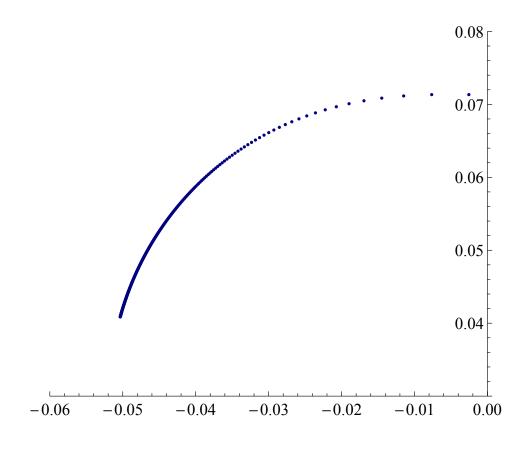
$$\left(1 + \frac{s-1}{m}\right) F_m(s) = \frac{1}{m(m+1)} + \frac{m+1}{m} \sum_{j=1}^m \frac{F_{m-j}(s)}{j(j+1)}.$$

At each stage we take a weighted average of the previous terms, add a small bit and rotate slightly.

This is a very stable dynamical system.

The dependence of the end result  $\zeta$  on s can be very sensitive because s rotates at each step. But for each fixed s we have a very smooth way of getting to  $\zeta(s)$ .

Here are the first few hundred values of  $(n+1)F_n(1/2-14i)$ .



If we treat the first m+1 of these relations as a linear system for the values  $F_0(s), F_1(s), \ldots, F_m(s)$  we can express the fact that  $F_m(s) = 0$  by the vanishing of a certain determinant.

The numerator of the  $m^{th}$  function is the determinant of

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ \frac{1}{2} & 1 & 0 & 0 & \dots & 0 \\ \frac{1}{3} & \frac{1}{2} & 1 & 0 & \dots & 0 \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \frac{1}{m+1} & \frac{1}{m} & \frac{1}{m-1} & \dots & \frac{1}{2} & 1 \end{pmatrix} + (1-s) \begin{pmatrix} 0 & 1 & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{m} \\ 0 & 0 & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{m} \\ 0 & 0 & 0 & \frac{1}{3} & \dots & \frac{1}{m} \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

So RH can be restated as what looks like a rather conventional spectral problem.

Connes reformulated RH as a statement about the spectrum of an operator acting on an infinite-dimensional function space.

There is a connection between Connes' infinite-dimensional operator and these finite-dimensional ones.

If  $\Re s > 1$ 

$$G_m(s) = \sum_{j=0}^m (-1)^j \frac{a_{m,j}}{s+j-1} = \sum_{j=0}^m (-1)^j a_{m,j} \int_0^1 x^j x^{s-2} dx$$
$$= \int_0^1 p_m(x) x^{s-2} dx$$

$$p_m(x) = (1-x)\left(1-\frac{x}{2}\right)\dots\left(1-\frac{x}{m}\right) \approx e^{-h_m x}$$

so it is no surprise that  $G_m(s) \approx h_m^{1-s} \Gamma(s-1)$ .

We want to do something similar for  $F_m$ .

If  $\Re s > 1$ 

$$\int_0^\infty \frac{y}{1 - e^{-y}} e^{-y} y^{s-2} \, dy = \int_0^\infty \left( \sum_{n=1}^\infty e^{-ny} \right) y^{s-1} \, dy$$
$$= \sum_{n=1}^\infty \int_0^\infty e^{-ny} y^{s-1} \, dy = \sum_{n=1}^\infty \frac{1}{n^s} \Gamma(s).$$

So

$$\Gamma(s)\zeta(s) = \int_0^\infty \frac{-\log(1 - (1 - e^{-y}))}{1 - e^{-y}} e^{-y} y^{s-2} dy$$
$$= \int_0^\infty \sum_{k=0}^\infty \frac{1}{k+1} (1 - e^{-y})^k e^{-y} y^{s-2} dy.$$

$$\Gamma(s)\zeta(s) = \int_0^\infty \sum_{k=0}^\infty \frac{1}{k+1} (1 - e^{-y})^k e^{-y} y^{s-2} dy.$$

Using a standard formula for Bernoulli numbers we get that for  $\Re s>1$ 

$$F_m(s) = \int_0^1 \left( \sum_{k=0}^m \frac{1}{k+1} \sum_{r=0}^k {k \choose r} (-1)^r p_m((r+1)x) \right) x^{s-2} dx$$

If x is close to zero then

$$\Delta_{m,k}(x) = \sum_{r=0}^{k} {k \choose r} (-1)^r p_m((r+1)x)$$

$$\approx \sum_{r=0}^{k} {k \choose r} (-1)^r e^{-h_m(r+1)x} = (1 - e^{-h_m x})^k e^{-h_m x}.$$

For small values of x the integrand is approximately

$$\left(\sum_{k=0}^{m} \frac{1}{k+1} e^{-h_m x} (1 - e^{-h_m x})^k\right) x^{s-2}.$$

If the approximation were good for all x between 0 and 1 then  $F_m(s)$  would be close to

$$\int_0^1 \sum_{k=0}^m \frac{1}{k+1} e^{-h_m x} (1 - e^{-h_m x})^k x^{s-2} dx$$

$$=h_m^{1-s} \int_0^{h_m} \sum_{k=0}^m \frac{1}{k+1} e^{-y} (1 - e^{-y})^k y^{s-2} \, dy$$

and the integral converges to  $\Gamma(s)\zeta(s)$  as  $m\to\infty$ .

We want to show that

$$h_m^{s-1}F_m(s) \to \Gamma(s)\zeta(s)$$

locally uniformly for  $\Re s > 0$ .

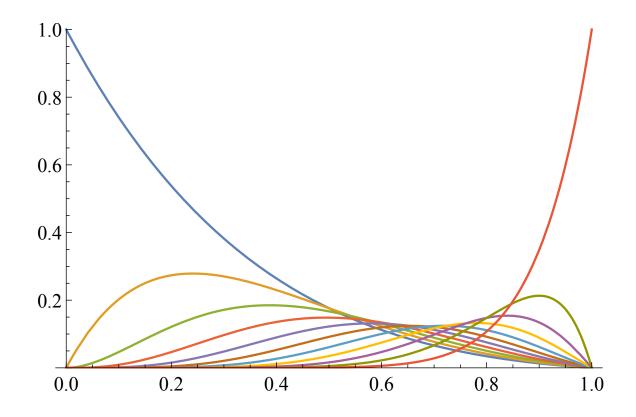
Crossing the pole at s = 1 is not the problem.

The difficulty is that unless x is very close to 0, the expressions

$$\Delta_{m,k}(x) = \sum_{r=0}^{k} {k \choose r} (-1)^r p_m((r+1)x)$$

involve values of  $p_m$  at points well outside the interval [0,1].

The graph shows the  $\Delta_{m,k}$  for m=10.



**Lemma 1** (**Key Lemma**). If m is a non-negative integer, k is any integer and  $x \in [0,1]$  then

$$\Delta_{m,k}(x) \geq 0.$$

It is trivial to check that

$$\sum_{k=0}^{m} \Delta_{m,k}(x) = 1$$

for all x, so the  $\Delta_{m,k}$  form a partition of unity on [0,1].

After some fairly delicate estimates we get that the ratios

$$\frac{F_m(s)}{(s-1)G_m(s)}$$

converge locally uniformly to  $\zeta(s)$  for  $\Re s > 0$ .

My guess is that they do so on the entire complex plane.

Theorem 2 (Convergence).

$$h_m^{s-1}(s-1)F_m(s) \to (s-1)\Gamma(s)\zeta(s)$$

locally uniformly for  $\Re s > 0$ .

**Lemma 1** (**Key Lemma**). If m is a non-negative integer, k is any integer k and  $x \in [0,1]$ 

$$\Delta_{m,k}(x) \geq 0.$$

The proof of the key lemma involves the introduction of an additional parameter. For each  $\boldsymbol{v}$  define

$$P_m(v,x) = (v+1-x)(v+2-x)\dots(v+m-x)$$

and

$$\tilde{\Delta}_{m,k}(v,x) = \sum_{r=0}^{k} {k \choose r} (-1)^r P_m(v,(r+1)x).$$

 $\tilde{\Delta}_{m,k}(0,x)=m!\Delta_{m,k}(x)$  so the key lemma follows from:

**Lemma 3.** If m is a non-negative integer, k is an integer,  $v \ge 0$  and  $0 \le x \le 1$  then

$$\tilde{\Delta}_{m,k}(v,x) \geq 0.$$

*Proof* We use induction on m. When m=0,  $\tilde{\Delta}_{m,k}(v,x)$  is zero unless k=0 in which case it is 1.

We claim that for m > 0

$$\tilde{\Delta}_{m,k}(v,x) = (v+1-x)\tilde{\Delta}_{m-1,k}(v+1,x) + kx\tilde{\Delta}_{m-1,k-1}(v+1-x,x).$$

Then the inductive step is clear because we can assume that  $k \ge 0$  and for the given range of v and x, the number v + 1 - x is also at least 0.

## Estimating the size of $\zeta$

We have that

$$F_m(s) = \int_0^1 f_m(x) x^{s-2} \, dx$$

where

$$f_m(x) = \sum_{k=0}^{m} \frac{1}{k+1} \Delta_{m,k}(x).$$

Numerical evidence indicates that the function  $f_m(x/h_m)$  differs from  $x/(e^x-1)$  by only about  $h_m/m$  at any point of  $[0,h_m]$  and so we expect the ratio

$$\frac{F_m(s)}{(s-1)G_m(s)}$$

to provide a good approximation to  $\zeta$  at s=1/2+it as long as  $\Gamma(s)$  is as large as  $h_m/m$ .

We expect the ratio

$$\frac{F_m(s)}{(s-1)G_m(s)}$$

to provide a good approximation to  $\zeta$  at s=1/2+it as long as  $\Gamma(s)$  is as large as  $h_m/m$ .

This happens if |t| is at most a bit less than  $\frac{2}{\pi} \log m$ .

Rough calculations indicate that the ratio is not too far from  $\zeta$  for t all the way up to  $\log m$ .

There are good reasons to think that  $F_m(s)$  does not oscillate significantly for t larger than  $\log m$ .

## The connection with Connes' operator

The Toeplitz matrix

$$L_{m} = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ \frac{1}{2} & 1 & 0 & 0 & \dots & 0 \\ \frac{1}{3} & \frac{1}{2} & 1 & 0 & \dots & 0 \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \frac{1}{m+1} & \frac{1}{m} & \frac{1}{m-1} & \dots & \frac{1}{2} & 1 \end{pmatrix}$$

can be thought of as acting on polynomials  $a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$  rather than sequences  $(a_0, \ldots, a_m)$ .

It does so by multiplication by the partial sum

$$\sum_{0}^{m} \frac{x^{j}}{j+1}$$

of the series for  $\frac{-\log(1-x)}{x}$  (followed by truncation back to a polynomial of degree m).

In this context the upper triangular matrix  $U_m$  maps a polynomial q of degree m to

$$\frac{1}{1-x}\int_{x}^{1}\frac{q(t)-q(0)}{t}dt.$$

The operator of Connes is built from a multiplication operator and an integral operator much like these, acting on an infinite-dimensional function space.