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This talk describes rational functions approximating (:
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The small size of ((1/2 + it) depends upon cancellation between dif-

ferent Dirichlet terms.

Each coefficient in the rational functions depends upon all the Dirichlet

terms so the cancellation is built into the coefficients.



For each integer m > 0 we define
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The rational functions in question are the ratios
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(s = 1)Gm(s)
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The mth ratio interpolates ¢ at the points 0,—1,—2,...,1 —m and has

a simple pole with residue 1 at s = 1.



The graph shows (s — 1)({(s) and the ratio F5(s)/Gs(s)




T he sequence converges locally uniformly to ¢, at least to the right of
the line {s: Rs = 0}.

We shall see that
Fr(s) & hg, T (s)¢(s)
and

(s — 1)Gm(s) ~ h}n_sr(s)

where h,, is the partial sum > . 1/5 of the harmonic series.
1=1



T he rational functions might still be difficult to analyse: what are the

coefficients?

Focus on the Fi,:

Fo(s), F1(s), F5(s), F3(s)
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We have a recurrence relation: for each m
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Equivalently
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At each stage we take a weighted average of the previous terms, add

a small bit and rotate slightly.
This is a very stable dynamical system.

The dependence of the end result ¢ on s can be very sensitive because
s rotates at each step. But for each fixed s we have a very smooth

way of getting to ((s).



Here are the first few hundred values of (n+ 1)F,(1/2 — 144).
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If we treat the first m + 1 of these relations as a linear system for the
values Fp(s), F1(s),..., Fm(s) we can express the fact that Fi,(s) = 0

by the vanishing of a certain determinant.

The numerator of the m!"* function is the determinant of
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So RH can be restated as what looks like a rather conventional spectral

problem.

Connes reformulated RH as a statement about the spectrum of an

operator acting on an infinite-dimensional function space.

There is a connection between Connes’' infinite-dimensional operator

and these finite-dimensional ones.



If Rs > 1
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so it is no surprise that Gy (s) ~ hl =5 (s — 1).

We want to do something similar for Fj,.



If s> 1
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r(s)(s) = [ Z H—lu—e—y)’f ey 2 dy.

Using a standard formula for Bernoulli numbers we get that for ts > 1
k
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If x is close to zero then
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For small values of x the integrand is approximately

m 1
( Z " 1e—hmac(1 . ehmx>k) $3—2.

k=0

If the approximation were good for all x between 0 and 1 then Fj,(s)

would be close to
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and the integral converges to IN'(s){(s) as m — oo.



We want to show that

Wi Em(s) — T(s)¢(s)

locally uniformly for s > O.
Crossing the pole at s = 1 is not the problem.

T he difficulty is that unless x is very close to 0, the expressions

k
Amp@ =Y (1)1 Pl + 1))

r=0
involve values of p,, at points well outside the interval [0, 1].



The graph shows the A, ;. for m = 10.
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Lemma 1 (Key Lemma). If m is a non-negative integer, k is any

integer and x € [0, 1] then

Am,k(x) > 0.

It is trivial to check that

m
Z Am,k(m) =1
k=0

for all z, so the A, ; form a partition of unity on [0, 1].



After some fairly delicate estimates we get that the ratios

Fin(s)
(s = 1)Gm(s)

converge locally uniformly to ((s) for s > 0.

My guess is that they do so on the entire complex plane.

Theorem 2 (Convergence).

h3 (s — 1) Fn(s) = (s — 1M (s)¢(s)

locally uniformly for s > 0.



Lemma 1 (Key Lemma). If m is a non-negative integer, k is any

integer k and x € [0, 1]

The proof of the key lemma involves the introduction of an additional

parameter. For each v define

Phn(v,z) =(v+1—-—2)(v4+2—-—2)...(v+m—2x)

and
k

B (0,2) = 3 (1) (-1 Pul, (r + D))
r=0

A, (0,2) = mlA,, 1 (x) so the key lemma follows from:



Lemma 3. If m is a non-negative integer, k is an integer, v > 0 and
0< zx<1 then

Am,kz(va r) > 0.

Proof We use induction on m. When m = 0, Am,k(v,az) iS zero unless

k= 0 in which case it is 1.
We claim that for m > 0

Aprwz)=@wW+1-2)A, 1w+ 1,2)+kxl 1 1(v+1—2,2).

Then the inductive step is clear because we can assume that £ > 0 and

for the given range of v and z, the number v+ 1 — z is also at least O.



Estimating the size of

We have that
1 2

where
m 1

(@) = 2t

Am,k(x)°

Numerical evidence indicates that the function fy,(z/hy) differs from
x/(e*—1) by only about h,,/m at any point of [0, h;y] and so we expect
the ratio
Fin(s)
(s = 1)Gm(s)
to provide a good approximation to ¢ at s = 1/2 + it as long as N(s)

is as large as hm/m.



We expect the ratio
Fin(s)
(s —1)Gm(s)
to provide a good approximation to ¢ at s = 1/2 + it as long as N(s)

is as large as hm/m.
This happens if |t| is at most a bit less than %Iog m.

Rough calculations indicate that the ratio is not too far from ( for t

all the way up to logm.

There are good reasons to think that F,(s) does not oscillate signifi-

cantly for t larger than logm.



The connection with Connes’ operator

The Toeplitz matrix
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can be thought of as acting on polynomials ao—l—alx—l—ang—l—- ot amx™

rather than sequences (ag,...,am).



It does so by multiplication by the partial sum

>
5+ 1

of the series for = 'Ogil_‘”) (followed by truncation back to a polynomial

of degree m).

In this context the upper triangular matrix U,, maps a polynomial q of

degree m to

1 /1 q(t) —q(0) it

1 —=x t

The operator of Connes is built from a multiplication operator and
an integral operator much like these, acting on an infinite-dimensional

function space.



