
The Riemann-Roch

strategy

A. Connes

(Collaboration with C. Consani)

1



RH equivalent

RH problem is equivalent to an inequality for real valued
functions f on R∗+ of the form

RH ⇐⇒ s(f, f) ≤ 0 , ∀f |
∫
f(u)d∗u =

∫
f(u)du = 0.

s(f, g) := N(f ? g̃), g̃(u) := u−1g(u−1)

? = convolution product on R∗+

N(h) :=
∞∑
n=1

Λ(n)h(n) +
∫ ∞

1

u2h(u)− h(1)

u2 − 1
d∗u+ c h(1)

c =
1

2
(logπ + γ).
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Explicit Formula

F : [1,∞) → R continuous and continuously differen-

tiable except for finitely many points at which both

F (u) and F ′(u) have at most a discontinuity of the first

kind, and s.t. for some ε > 0 : F (u) = O(u−1/2−ε)

Φ(s) =
∫ ∞

1
F (u)us−1du

Φ(
1

2
)+Φ(−

1

2
)−

∑
ρ∈Zeros

Φ(ρ−
1

2
) =

∑
p

∞∑
m=1

log p p−m/2F (pm)+

+(
γ

2
+

logπ

2
)F (1) +

∫ ∞
1

t3/2F (t)− F (1)

t(t2 − 1)
dt
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Weil’s formulation

h ∈ S(CK) a Schwartz function with compact support :

ĥ(0) + ĥ(1)−
∑

χ∈ĈK,1

∑
Zχ̃

ĥ(χ̃, ρ) =
∑
v

∫ ′
K∗v

h(u−1)

|1− u|
d∗u

where the principal value
∫ ′
K∗v is normalized by the addi-

tive character αv and for any character ω of CK

ĥ(ω, z) :=
∫
h(u)ω(u) |u|z d∗u, ĥ(t) := ĥ(1, t)
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The adele class space

and the explicit formulas

Let K be a global field, the adele class space of K is the

quotient XK = AK/K× of the adeles of K by the action

of K× by multiplication.

Tξ(x) := ξ(ux) =
∫
k(x, y)ξ(y)dy

k(x, y) = δ(ux− y),

Trdistr(T ) :=
∫
k(x, x)dx =

∫
δ(ux− x)dx

=
1

|u− 1|

∫
δ(z)dz =

1

|u− 1|

5



���������� ��������

�������� ��������

���������� ��������

6



Critical zeros as absorption spectrum

The spectral side now involves all non-trivial zeros and

the geometric side is given by :

Trdistr

(∫
h(w)ϑ(w)d∗w

)
=
∑
v

∫
K×v

h(w−1)

|1− w|
d∗w

(A. Connes, Selecta 1998, R. Meyer, Duke, 2005)
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The limit q → 1 and

the Hasse-Weil formula

C. Soulé : ζX(s) := lim
q→1

Z(X, q−s)(q − 1)N(1), s ∈ R

where Z(X, q−s) denotes the evaluation at T = q−s of
the Hasse-Weil exponential series

Z(X,T ) := exp

∑
r≥1

N(qr)
T r

r


For the projective space Pn : N(q) = 1 + q + . . .+ qn

ζPn(F1)(s) = lim
q→1

(q − 1)n+1ζPn(Fq)(s) =
1∏n

0(s− k)

8



The limit q → 1

The Riemann sums of an integral appear from the right

hand side :

∂sζN(s)

ζN(s)
= −

∫ ∞
1

N(u)u−sd∗u

Thus the integral equation produces a precise equation

for the counting function NC(q) = N(q) associated to

the hypothetical curve C :

∂sζQ(s)

ζQ(s)
= −

∫ ∞
1

N(u)u−sd∗u
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The distribution N(u)

This equation admits a solution which is a distribution
and is given with ϕ(u) :=

∑
n<u nΛ(n), by the equality

N(u) =
d

du
ϕ(u) + κ(u)

where κ(u) is the distribution which appears in the ex-
plicit formula∫ ∞

1
κ(u)f(u)d∗u =

∫ ∞
1

u2f(u)− f(1)

u2 − 1
d∗u+cf(1) , c =

1

2
(logπ+γ)

The conclusion is that the distribution N(u) is positive
on (1,∞) and is given by

N(u) = u−
d

du

∑
ρ∈Z

order(ρ)
uρ+1

ρ+ 1

+ 1
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Space XQ := Q×\AQ/Ẑ×

The quotient XQ := Q×\AQ/Ẑ× of the adele class space

Q×\AQ of the rational numbers by the maximal com-

pact subgroup Ẑ× of the idele class group, gives by

considering the induced action of R×+, the above coun-

ting distribution N(u), u ∈ [1,∞), which determines,

using the Hasse-Weil formula in the limit q → 1, the

complete Riemann zeta function.
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Geometric structure of XQ

The action of R×+ on the space XQ is in fact the action

of the Frobenius automorphisms Frλ on the points of

the arithmetic site over Rmax
+ .

Topos + characteristic 1

— Arithmetic Site.

— Frobenius correspondences.

— Extension of scalars to Rmax
+ .
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Why semirings ?

A category C is semiadditive if it has finite products

and corpoducts, the morphism 0→ 1 is an isomorphism

(thus C has a 0), and the morphisms

γM,N : M ∨N →M ×N

are isomorphisms.

Then End(M) is naturally a semiring for any object M .

Finite semifields, characteristic 1

K = finite semifield : then K is a field or K = B :

B := {0,1}, 1 + 1 = 1
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The semifield Zmax

Lemma : Let F be a semifield of characteristic 1, then

for n ∈ N× the map Frn ∈ End(F), Frn(x) := xn ∀x ∈ F
defines an injective endomorphism of F .

Zmax := (Z∪{−∞},max,+), unique semifield with mul-

tiplicative group infinite cyclic.

multiplicative notation : Addition ∨, un∨um = uk, with

k = sup(n,m). Multiplication : unum = un+m.

Map N× → End(Zmax), n 7→ Frn is isomorphism of semi-

groups. (extend to 0)
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Arithmetic Site (N̂×,Zmax)

Zmax on which N× acts by n 7→ Frn is a semiring in the

topos N̂× of sets with an action of N×.

The Arithmetic Site (N̂×,Zmax) is the topos N̂× endo-

wed with the structure sheaf : O := Zmax semiring in

the topos.

16



Characteristic 1

The role of Fq is played by

B := {0,1}, 1 + 1 = 1

No finite extension, but

Frλ(x) = xλ automorphisms of Rmax
+ .

GalB(Rmax
+ ) = R×+
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Points of the arithmetic site

over Rmax
+

These are defined as pairs (p, f#
p ) of a point p of N̂×

and local morphism f#
p : Op → Rmax

+ .

Theorem

The points A(Rmax
+ ) of (N̂×,Zmax) on Rmax

+ form the

double quotient Q×\AQ/Ẑ∗. The action of the Frobenius

Frλ of Rmax
+ corresponds to the action of the idele class

group.
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C curve defined Arithmetic Site

over Fq A = (N̂×,Zmax) over B

Structure sheaf OC Structure sheaf Zmax

Galois on C(F̄q) GalB(Rmax
+ ) on A(Rmax

+ )

Ψ Frobenius Correspondences Ψ(λ)
Correspondence λ ∈ R∗+ on A×A
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Frobenius Correspondences
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Theorem

Let λ, λ′ ∈ R∗+ with λλ′ /∈ Q. The composition

Ψ(λ) ◦Ψ(λ′) = Ψ(λλ′)

Same if λ and λ′ are rational. If λ /∈ Q, λ′ /∈ Q and λλ′ ∈ Q,

Ψ(λ) ◦Ψ(λ′) = Ψ(λλ′) ◦ Idε = Idε ◦Ψ(λλ′)

where Idε is the tangential deformation of Id.
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Divisors and intersection

Intersection D •D′ of formal divisors

D :=
∫
h(λ)Ψλ d

∗λ

D •D′ :=< D ? D̃′,∆ >

where D̃′ is the transposed D′ and composition D ? D̃′

is bilinear < D?D̃′,∆ > using the distribution N(u) and

correspondence Ψλ of degree λ.
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Negativity ⇐⇒ RH

I Horizontal and vertical ξj.

I RH is equivalent to inequality

D •D ≤ 2(D • ξ1)(D • ξ2)

Incompatibility of ≤ with naive positivity resolved by

small lemma (cf Matuck-Tate-Grothendieck)
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Extension of scalars to Rmax

The following holds :

Zmax⊗̂BRmax ' R(Z)

R(Z) = semiring of continuous, convex, piecewise affine

functions on R+ with slopes in Z ⊂ R and only finitely

many discontinuities of the derivative

These functions are endowed with the pointwise ope-

rations of functions with values in Rmax
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Points of the topos [0,∞) o N×

Theorem : The points of the topos [0,∞) o N× form

the double quotient Q×\AQ/Ẑ∗.

Corollary : One has a canonical isomorphism Θ bet-

ween the points of the topos [0,∞) o N× and A(Rmax
+ )

i.e. the points of the arithmetic site defined over Rmax
+ .
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Structure sheaf of [0,∞) o N×

This is the sheaf on [0,∞) o N× associated to convex,

piecewise affine functions with integral slopes

Same as for the localization of zeros of analytic func-

tions f(X) =
∑
anXn in an annulus

A(r1, r2) = {z ∈ K | r1 < |z| < r2}

τ(f)(x) := max
n
{−nx− v(an)} , ∀x ∈ (− log r2,− log r1)

τ(f)(x) :=
1

2π

∫ 2π

0
log |f(e−x+iθ)|dθ
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C̄ = C ⊗Fq F̄q Scaling site

on F̄q Â = ([0,∞) o N×,O) on Rmax
+

C(F̄q) = C̄(F̄q) A(Rmax
+ ) = Â(Rmax

+ )

Structure sheaf Zmax⊗̂BRmax
+ → Sheaf of

OC̄ of C̄ convex piecewise affine
= C ⊗Fq F̄q functions, slopes ∈ Z

Sheaf K of Sheaf of fractions =
rational continuous piecewise

functions affine functions, slopes ∈ Z
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Periodic Orbits

By restriction of the structure sheaf of

Â = ([0,∞) o N×,O)

to periodic orbits (i.e. the image of SpecZ) one

obtains, for each prime p a real analogue

Cp = R∗+/p
Z

of Jacobi elliptic curve C∗/qZ.
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Elliptic curve Periodic orbit
over C Curve Cp over Rmax

+

Points over C : C×/qZ R∗+/p
Z, H ⊂ R, H ∼ Hp

Structure sheaf Sheaf of periodic
periodic functions convex piecewise affine
f(qz) = f(z) functions, slopes ∈ Hp

Sheaf K of Sheaf of periodic f(pλ) = f(λ)
rational functions continuous piecewise affine
f(qz) = f(z) functions, slopes ∈ Hp
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Rational functions

For W ⊂ Cp open, Op(W ) is simplifiable, one lets Kp
the sheaf associated to the presheaf W 7→ FracOp(W ).

Lemma The sections of the sheaf Kp are continuous

piecewise affine functions with slopes in Hp endowed

with max (∨) and the sum.

(x− y) ∨ (z − t) = ((x+ t) ∨ (y + z))− (y + t).
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Cartier divisors

Lemma : The sheaf CDiv(Cp) of Cartier divisors i.e.

the quotient sheaf K×p /O×p , is isomorphic to the sheaf

of naive divisors H 7→ D(H) ∈ H,

∀λ, ∃V open λ ∈ V, D(µ) = 0 , ∀µ ∈ V, µ 6= λ

Point pH associated to H ⊂ R and f section of K at pH.

Order(f) = h+ − h− ∈ H ⊂ R

h± = lim
ε→0±

f((1 + ε)H)− f(H)

ε
.

34



Divisors

Definition : A divisor is a global section of K×p /O×p ,

i.e. a map H → D(H) ∈ H vanishing except on finitely

many points.

Proposition : (i) The divisors Div(Cp) form an abelian

group under addition.

(ii) The condition D′(H) ≥ D(H), ∀H ∈ Cp, defines a

partial order on Div(Cp).

(iii) The degree map is additive and order preserving

deg(D) :=
∑

D(H) ∈ R.
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Principal divisors

The sheaf Kp admits global sections :

K := K(Cp) = H0(R∗+/p
Z,Kp)

the semifield of global sections.

Principal divisors : The map which to f ∈ K× asso-
ciates the divisor

(f) :=
∑
H

(H,OrdH(f)) ∈ Div(Cp)

is a group morphism K× → P ⊂ Div(Cp).

The subgroup P ⊂ Div(Cp) of principal divisors is contai-
ned in the kernel of the morphism deg : Div(Cp)→ R :∑

H

OrdH(f) = 0 , ∀f ∈ K×.
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Invariant χ

For p > 2 one considers the ideal (p− 1)Hp ⊂ Hp.

0→ (p− 1)Hp → Hp
r→ Z/(p− 1)Z→ 0

Lemma : For H ⊂ R, H ' Hp, the map χ : H → Z/(p−
1)Z, χ(µ) = r(µ/λ) where H = λHp is independent of

the choice of λ.

Theorem

The map (deg, χ) is a group isomorphism

(deg, χ) : Div(Cp)/P → R× (Z/(p− 1)Z)

where P is the subgroup of principal divisors.
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Theta Functions on Cp = R∗+/p
Z

∞∏
0

(1− tmw)→ f+(λ) :=
∞∑
0

(0 ∨ (1− pmλ))

∞∏
1

(1− tmw−1)→ f−(λ) :=
∞∑
1

(
0 ∨ (p−mλ− 1)

)
Theorem

Any f ∈ K(Cp) has a canonical decomposition

f(λ) =
∑
i

Θhi,µi(λ)−
∑
j

Θh′j,µ
′
j
(λ)− hλ+ c

where c ∈ R, (p − 1)h =
∑
hi −

∑
h′j and hi ≤ µi < phi,

h′j ≤ µj < ph′j.
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p-adic filtration H0(D)ρ

Definition : Let D ∈ Div(Cp) one lets

H0(D) := {f ∈ K(Cp) | D + (f) ≥ 0}

It is an Rmax-module, f, g ∈ H0(D)⇒ f ∨ g ∈ H0(D).

Lemma : Let D ∈ Div(Cp) be a divisor, one gets a

filtration of H0(D) by Rmax-sub-modules :

H0(D)ρ := {f ∈ H0(D) | ‖f‖p ≤ ρ}

using the p-adic norm.
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Real valued Dimension

DimR(H0(D)) := lim
n→∞ p

−ndimtop(H0(D)p
n
)

where the topological dimension dimtop(X) is the num-

ber of real parameters on which solutions depend.

Riemann-Roch Theorem

(i) Let D ∈ Div(Cp) a divisor with deg(D) ≥ 0, then

lim
n→∞ p

−ndimtop(H0(D)p
n
) = deg(D)

(ii) One has the Riemann-Roch formula :

DimR(H0(D))−DimR(H0(−D)) = deg(D) , ∀D ∈ Div(Cp).
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Back to the goal : RR on the square

Integrals of Frobenius correspondences

D :=
∫
h(λ)Ψλ d

∗λ

One needs a Riemann-Roch formula

dimH0 − dimH1 + dimH2 = 1
2D •D

in order to make ±D effective and get a contradiction

(Negativity ⇐⇒ RH)

Open problem : suitable definition of H1
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Tropical RR theorem

Baker, Norine, Gathmann, Kerber.

The power in these results is the existence part, it uses

Game theory, Potential theory

but the definition of the terms in the RR formula are

not given in terms of the dimension of H0 !

(counter-example of Yoshitomi)
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Complex lift of the Scaling Site

The new development in our strategy is to deduce the

existence part of the Riemann-Roch formula in the tro-

pical shadow (i.e. on the square of the Scaling Site)

from a corresponding formula holding on the analytic

geometric version of the space (i.e. its complex lift)

The advantage of working in characteristic zero is to

have already available all the algebraic and analytical

tools needed to prove such result
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Jensen

f(z) holomorphic function in an annulus

A(r1, r2) = {z ∈ C | r1 < |z| < r2}

τ(f)(x) :=
1

2π

∫ 2π

0
log |f(e−x+iθ)|dθ.

∃z | f(z) = 0, − log |z| = x ⇐⇒ ∆(τ(f))(x) 6= 0

Tropical zeros of τ(f) are the − log |z|.

Tropical descent

D + (τ) :=
∑

njδλj + ∆(τ) ≥ 0.
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First attempt : punctured disk

D∗ o N×→ [0,∞) o N×

D∗ := {q ∈ C | 0 < |q| ≤ 1}

The monoid N× acts naturally on D∗ by means of the
map q 7→ qn. In this way, one defines a ringed topos by
endowing the topos D∗oN× with the structure sheaf O
of complex analytic functions.

The map

D∗ 3 q 7→ − log |q| ∈ [0,∞)

extends to a geometric morphism of toposes D∗ o
N× → [0,∞) o N×.
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Almost periodic analytic fcts

In order to lift divisors of the form D(f) =
∫
f(λ)δλ d

∗λ
to a discrete divisor D̃(f) on a complex geometric

space, one uses the Jessen theory of analytic almost

periodic functions

ϕ(σ) := lim
T→∞

1

2T

∫ T
−T

log |f(σ + it)|dt (1)

lim
T→∞

N(T )

2T
=
ϕ′(σ2)− ϕ′(σ1)

2π
. (2)
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Proetale cover D̃∗ o N×

D̃∗ := lim←−
N×

(D∗, z 7→ zn).

One uses : Witt construction in characteristic 1 and

Teichmuller lift [−] : Rmax
+ →W , to define

q(z) := [|z|] exp(2πiargz)

The structure sheaf of the pro-étale cover involves the

ring W [qr] generated by rational powers qr of q over W

Compare to perfectoid torus.
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Adelic description : CQ

Compactification G := lim←−N× R/nZ,

CQ = Q∗\(AQ ×G) = P (Q)\P (AQ). (3)

The obtained noncommutative space is the moduli
space of elliptic curves endowed with a triangular
structure, up to isogenies.

A triangular structure on an elliptic curve E is a pair
(ξ, η) of elements of the Tate module T (E), such that
ξ 6= 0 and < ξ⊥, η >= Z.

ξ⊥ := {χ ∈ Hom(E,R/Z) | T (χ)(ξ) = 0} ⊂ Hom(E,R/Z)

The space CQ has a foliation ! of complex dimension
1 and an additional real deformation parameter.
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Frobenius correspondences

Use the Witt construction in characteristic 1, entropy

u+ v = sup
α∈[0,1]

c(α)uαv1−α, c(α) := α−α(1− α)1−α

Automorphisms θλ ∈ Aut(W ), Teichmüller lift [x]

θλ([x]) = [xλ] , ∀x ∈ Rmax
+ , λ ∈ R∗+.

The right action R(µ) of R∗+ ⊂ P+(R) extends to W

valued functions, the arithmetic Frobenius is

f 7→ Fraµ(f), Fraµ(f) := θµ(R(µ−1)(f))

q(x+ iy) := [e−2πy]e2πix
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Strategy

1. Develop intersection theory in such a way that
the divergent term in log Λ is eliminated.

2. Formulate and prove a Hirzebruch-Riemann-Roch
formula on the square whose topological side
part 1

2c1(E)2 is 1
2s(f, f). This step involves the

lifting D(f) =
∫
f(λ)Ψλ d

∗λ to a divisor D̃(f) in
the complex set-up and the use of correspon-
dences.

3. Use the assumed positivity of s(f, f) to get an
existence result for H0(D̃(f)) or H0(−D̃(f)).

4. Use tropical descent to get the effectivity of a di-
visor equivalent to D(f) and finally get a contra-
diction.
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