L-functions and
 Random Matrix Theory

Brian Conrey
AIM
and
Bristol

June 6, 2018

In 1972 Hugh Montgomery during a conversation with Freeman Dyson - discovered that the zeros of the Riemann zeta-function are distributed

 like the eigenvalues of random GUE matrices.

Sarvadaman Chowla introduced Montgomery to Dyson at tea at IAS

Freeman
Dyson

Montgomery, 1971 - pair correlation

$$
\sum_{\gamma_{1}, \gamma_{2} \in[0, T]} w\left(\gamma_{1}-\gamma_{2}\right) f\left(\frac{\log T}{2 \pi}\left(\gamma_{1}-\gamma_{2}\right)\right)
$$

$$
=\frac{T \log T}{2 \pi}\left(f(0)+\int_{-\infty}^{\infty} f(u)\left[1-\left(\frac{\sin (\pi u)}{\pi u}\right)^{2}\right] d u+o(1)\right)
$$

where the Fourier transform of f vanishes outside of $[-1,1]$ and $w(x)=4 /\left(4+x^{2}\right)$.

The Institute for Advanced Study PRINCETON, NEW JERSEY O6540

April >1972

Note from Dyson to Selberg with a reference to Mehta's book.

Dean At le
The seference which 3) Montgomery
wants is
M.L. Mehta, "Random Matrices" Academic Press. N.Y. 1967

Page 76 Equation 6.13
Page 113 Equation 9.61
showing that the pain-correlation function of zeros of the 3-furction is identical with that of eigenvalues of a condom complex (Hermitian on unitary) matrix of large outer. Freeman Dy ton.

A Pair correlation, $N=10^{\wedge} 23,2^{\star} 10^{\wedge} 8$ zeros

Nearest neighbor spacings, near $\mathrm{N}=10^{\wedge} 16$

Bohigas, Giannoni, Schmit, Berry, \& Tabor were the first to understand the RMT implications of data on nuclear levels.

Fig. 1.4. Level spacing histogram for a large set of nuclear levels, often referred to as nuclear data ensemble. The data considered consist of 1407 resonance levels belonging to 30 sequences of 27 different nuclei: (i) slow neutron resonances of $\operatorname{Cd}(110$, 112, 114), $\operatorname{Sm}(152,154), \operatorname{Gd}(154,156,158,160), \operatorname{Dy}(160,162,164), \operatorname{Er}(166,168,170)$, $\mathrm{Yb}(172,174,176), \mathrm{W}(182,184,186), \mathrm{Th}(232)$, and $\mathrm{U}(238)$ (1146 levels); (ii) proton resonances of $\mathrm{Ca}(44)(J=1 / 2+), \mathrm{Ca}(44)(J=1 / 2-)$, and $\mathrm{Ti}(48)(J=1 / 2+)$ (157 lev-els); and (iii) (n, γ)-reaction data on $\operatorname{Hf}(177)(J=3), \operatorname{Hf}(177)(J=4), \operatorname{Hf}(179)(J=4)$, and $\operatorname{Hf}(179)(J=5)$ (104 levels). The data chosen in each sequence is believed to be complete (no missing levels) and pure (the same angular momentum and parity).

Eigenvalues of a randomly generated 96 X 96 unitary matrix

96 points chosen at random on $[0,1]$ and mapped to the circle by $\exp (2 \mathrm{pi} \mathrm{Ix})$

96 zeros of zeta starting at a height 1200 and wrapped once around the unit circle

Mehta's book is the classic reference on random matrix theory.

MADAN LAL MEHTA

Berry's number variance calculations (1988)

Figure 1. Number variance $V(L ; x)$ of the Riemann zeros, for $0 \leqslant L \leqslant 2$ and $x=10^{12}$. Dots: computed from the zeros by Odlyzko; full curve: semiclassical formula (19) with $\tau^{*}=\frac{1}{4}$; broken curve: number variance of the GUE; chain curve: number variance of the Gaussian orthogonal ensemble (GOE) of real symmetric random matrices.

Figure 3. As figure 2 but for $0 \leqslant L \leqslant 100$ and with stars rather than dots for the variance computed from the zeros (Gue not shown).

Ozluk (1982): "Pair Correlation of Zeros of Dirichlet L-functions"

Ozluk-Snyder (1993): "Small zeros of quadratic L-functions"

Hejhal (1994): "On the triple correlation of zeros of the zeta function"

Rudnick and Sarnak (1995):
"Zeros of principal L-functions and random matrix theory"

Symmetry and families of L-functions

Nick Katz

Katz and Sarnak (1999) discovered that the classical compact groups come into play when one considers families of L-functions over function fields; in particular the symplectic and orthogonal groups.

This is suggestive of a spectral interpretation of zeros of L-functions.

Iwaniec, Luo, and Sarnak (2000) "Low lying zeros of Lfunctions" gave ample theoretical evidence for the ideas of Katz and Sarnak for families of L-functions over number fields.

Moments

Classical Mean-Value theorems for ζ

Hardy and Littlewood (1918):

$$
\frac{1}{T} \int_{0}^{T}|\zeta(1 / 2+i t)|^{2} d t \sim \log T
$$

Ingham (1926):

$$
\frac{1}{T} \int_{0}^{T}|\zeta(1 / 2+i t)|^{4} d t \sim 2 \prod_{p}\left(1-\frac{1}{p}\right)\left(1+\frac{1}{p}\right) \frac{\log ^{4} T}{4!}
$$

Corey and Ghosh conjecture: mid 1980's

$$
\frac{1}{T} \int_{0}^{T}|\zeta(1 / 2+i t)|^{2 k} d t \sim g_{k} a_{k} \frac{\log ^{k^{2}} T}{k^{2}!}
$$

where

$$
a_{k}=\prod_{p}\left(1-\frac{1}{p}\right)^{(k-1)^{2}}
$$

$$
\times\left(1+\frac{\binom{k-1}{1}^{2}}{p}+\frac{\binom{k-1}{2}^{2}}{p^{2}}+\ldots\right)
$$

and g_{k} is an integer.

Conrey and Ghosh conjecture: 1992

$$
\frac{1}{T} \int_{0}^{T}|\zeta(1 / 2+i t)|^{6} d t \sim 42 \prod_{p}\left(1-\frac{1}{p}\right)^{4}\left(1+\frac{4}{p}+\frac{1}{p^{2}}\right) \frac{\log ^{9} T}{9!}
$$

Conrey and Gonek conjecture: 1998

$$
\frac{1}{T} \int_{0}^{T}|\zeta(1 / 2+i t)|^{8} d t \sim 24024 \prod_{p}\left(1-\frac{1}{p}\right)^{9}\left(1+\frac{9}{p}+\frac{9}{p^{2}}+\frac{1}{p^{3}}\right) \frac{\log ^{16} T}{16!}
$$

In 1998, Jon Keating and Nina Snaith discovered a close connection between the distribution of values of zeta and the distribution of values of characteristic polynomials of unitary matrices.

Jon Keating, Bristol University

Nina Snaith, Bristol University

Distribution of values of zeta vs RMT (Nina Snaith)

Keating and Snaith formula:

$$
\begin{aligned}
\int_{U(N)}|\operatorname{det}(I-X)|^{2 k} d X & =\frac{(N+1)(N+2)^{2} \ldots(N+k)^{k}(N+k+1)^{k-1} \ldots(N+2 k+1)}{1 \cdot 2^{2} \cdot k^{k} \cdot(k+1)^{k-1} \cdot(2 k+1)} \\
& \sim g_{k} \frac{N^{k^{2}}}{k^{2}!}
\end{aligned}
$$

$$
g_{k}=\frac{k^{2}!}{1 \cdot 2^{2} \cdot k^{k} \cdot(k+1)^{k-1} \cdot(2 k+1)}
$$

$$
g_{1}=1 \quad g_{2}=2 \quad g_{3}=42 \quad g_{4}=24024
$$

$$
g_{5}=701149020
$$

More precise moments: Lower order terms
Ingham:

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T}|\zeta(1 / 2+i t)|^{2} d t=\log \frac{T}{2 \pi}+2 \gamma-1+O\left(T^{1 / 2+\epsilon}\right) \\
& \text { Heath-Brown (1979) }
\end{aligned}
$$

$$
\frac{1}{T} \int_{0}^{T}|\zeta(1 / 2+i t)|^{4} d t=P(\log T)+O\left(T^{7 / 8+\epsilon}\right)
$$

for some polynomial P of degree 4

Theorem:

$$
\begin{aligned}
& \int_{0}^{T}|\zeta(1 / 2+i t)|^{4} d t \\
& =\int_{0}^{T} P_{2}\left(\log \frac{t}{2 \pi}\right) d t+O\left(T^{2 / 3+\epsilon}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
P_{2}(x)= & \frac{1}{2 \pi^{2}} x^{4}+\frac{8}{\pi^{4}}\left(\gamma \pi^{2}-3 \zeta^{\prime}(2)\right) x^{3} \\
& +\frac{6}{\pi^{6}}\left(-48 \gamma \zeta^{\prime}(2) \pi^{2}-12 \zeta^{\prime \prime}(2) \pi^{2}+7 \gamma^{2} \pi^{4}+144 \zeta^{\prime}(2)^{2}-2 \gamma_{1} \pi^{4}\right) x^{2} \\
& +\frac{12}{\pi^{8}}\left(6 \gamma^{3} \pi^{6}-84 \gamma^{2} \zeta^{\prime}(2) \pi^{4}+24 \gamma_{1} \zeta^{\prime}(2) \pi^{4}-1728 \zeta^{\prime}(2)^{3}+576 \gamma \zeta^{\prime}(2)^{2} \pi^{2}\right. \\
& \left.+288 \zeta^{\prime}(2) \zeta^{\prime \prime}(2) \pi^{2}-8 \zeta^{\prime \prime \prime}(2) \pi^{4}-10 \gamma_{1} \gamma \pi^{6}-\gamma_{2} \pi^{6}-48 \gamma \zeta^{\prime \prime}(2) \pi^{4}\right) x \\
& +\frac{4}{\pi^{10}}\left(-12 \zeta^{\prime \prime \prime \prime}(2) \pi^{6}+36 \gamma_{2} \zeta^{\prime}(2) \pi^{6}+9 \gamma^{4} \pi^{8}+21 \gamma_{1}^{2} \pi^{8}+432 \zeta^{\prime \prime}(2)^{2} \pi^{4}\right. \\
& +3456 \gamma \zeta^{\prime}(2) \zeta^{\prime \prime}(2) \pi^{4}+3024 \gamma^{2} \zeta^{\prime}(2)^{2} \pi^{4}-36 \gamma^{2} \gamma_{1} \pi^{8}-252 \gamma^{2} \zeta^{\prime \prime}(2) \pi^{6} \\
& +3 \gamma \gamma_{2} \pi^{8}+72 \gamma_{1} \zeta^{\prime \prime}(2) \pi^{6}+360 \gamma_{1} \gamma \zeta^{\prime}(2) \pi^{6}-216 \gamma^{3} \zeta^{\prime}(2) \pi^{6} \\
& \quad-864 \gamma_{1} \zeta^{\prime}(2)^{2} \pi^{4}+5 \gamma_{3} \pi^{8}+576 \zeta^{\prime}(2) \zeta^{\prime \prime \prime}(2) \pi^{4}-20736 \gamma \zeta^{\prime}(2)^{3} \pi^{2} \\
& \left.\quad 15552 \zeta^{\prime \prime}(2) \zeta^{\prime}(2)^{2} \pi^{2}-96 \gamma \zeta^{\prime \prime \prime}(2) \pi^{6}+62208 \zeta^{\prime}(2)^{4}\right),
\end{aligned}
$$

Another look at Ingham:

$$
\begin{aligned}
\int_{0}^{T} \zeta(s+\alpha) \zeta(1-s+\beta) d t= & \int_{0}^{T}\left(\zeta(1+\alpha+\beta)+e^{-\ell(\alpha+\beta)} \zeta(1-\alpha-\beta)\right) d t \\
& +O\left(T^{1 / 2+\epsilon}\right)
\end{aligned}
$$

$\ell=\log \frac{t}{2 \pi}$.

Random Matrix analogue
Let $X \in U(N)$ have eigenvalues $e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}$
and its characteristic polynomial

$$
\wedge_{X}(s)=\prod_{n=1}^{N}\left(1-s e^{-i \theta_{n}}\right) .
$$

Let X^{*} be the conjugate transpose of X. Then
$\int_{U(N)} \wedge_{X}\left(e^{-\alpha}\right) \wedge_{X}\left(e^{-\beta}\right) d X=z(\alpha+\beta)+e^{-N(\alpha+\beta)} z(-\alpha-\beta)$ with

$$
z(x)=\frac{1}{1-e^{-x}} .
$$

$$
\begin{aligned}
& \int_{0}^{T} \zeta(s+\alpha) \zeta(s+\beta) \zeta(1-s+\gamma) \zeta(1-s+\delta) d t \\
& =\int_{0}^{T} W(t, \alpha, \beta ; \gamma, \delta) d t+O\left(T^{2 / 3+\epsilon}\right)
\end{aligned}
$$

where $s=1 / 2+i t$ and

$$
\begin{aligned}
W=Z(\alpha, \beta ; \gamma, \delta) & +e^{-\ell(\alpha+\gamma)} Z(-\gamma, \beta ;-\alpha, \delta)+e^{-\ell(\alpha+\delta)} Z(-\delta, \beta ; \gamma,-\alpha) \\
& +e^{-\ell(\beta+\gamma)} Z(\alpha,-\gamma ;-\beta, \delta)+e^{-\ell(\beta+\delta)} Z(\alpha,-\delta ; \gamma,-\beta) \\
& +e^{-\ell(\alpha+\beta+\gamma+\delta)} Z(-\gamma,-\delta ;-\alpha,-\beta)
\end{aligned}
$$

and

$$
Z(\alpha, \beta ; \gamma, \delta)=\frac{\zeta(1+\alpha+\gamma) \zeta(1+\alpha+\delta) \zeta(1+\beta+\gamma) \zeta(1+\beta+\delta)}{\zeta(2+\alpha+\beta+\gamma+\delta)}
$$

Random Matrix analogue for the fourth moment

$$
\int_{U(N)} \wedge_{X}\left(e^{-\alpha}\right) \wedge_{X}\left(e^{-\beta}\right) \wedge_{X *}\left(e^{-\gamma}\right) \wedge_{X^{*}}\left(e^{-\delta}\right) d X=W(\alpha, \beta ; \gamma, \delta)
$$

where

$$
\begin{aligned}
W=Z(\alpha, \beta ; \gamma, \delta) & +e^{-N(\alpha+\gamma)} Z(-\gamma, \beta ;-\alpha, \delta)+e^{-N(\alpha+\delta)} Z(-\delta, \beta ; \gamma,-\alpha) \\
& +e^{-N(\beta+\gamma)} Z(\alpha,-\gamma ;-\beta, \delta)+e^{-N(\beta+\delta)} Z(\alpha,-\delta ; \gamma,-\beta) \\
& +e^{-N(\alpha+\beta+\gamma+\delta)} Z(-\gamma,-\delta ;-\alpha,-\beta)
\end{aligned}
$$

and

$$
Z(\alpha, \beta ; \gamma, \delta)=z(\alpha+\gamma) z(\alpha+\delta) z(\beta+\gamma) z(\beta+\delta) .
$$

Theorem (CFKRS). Let

$$
Z(A ; B)=\prod_{\alpha \in A, \beta \in B} z(\alpha+\beta)
$$

Then

$$
\begin{aligned}
\int_{U(N)} & \prod_{\alpha \in A} \wedge_{X}\left(e^{-\alpha}\right) \wedge_{X^{*}}\left(e^{-\beta}\right) d X \\
= & \sum_{\substack{S \subset A \\
T \subset B \\
|S|=|T|}} e^{-N\left(\sum s+\sum t\right)} Z(\bar{S} \cup(-T) ; \bar{T} \cup(-S))
\end{aligned}
$$

where

$$
\bar{S}=A-S \quad-S=\{-s: s \in S\} \quad \sum s=\sum_{s \in S} s
$$

Conjecture (CFKRS)

Let

$$
\prod_{\alpha \in A} \zeta(s+\alpha)=\sum_{n=1}^{\infty} \frac{\tau_{A}(n)}{n^{s}}
$$

Then (with $s=1 / 2+i t)$
$\int_{0}^{T} \prod_{\alpha \in A} \zeta(s+\alpha) \prod_{\beta \in B} \zeta(1-s+\beta) d t=\int_{0}^{T} \sum_{\substack{U \subset A, N \subset \subset \\|V| V|=|}}\left(\frac{t}{2 \pi}\right)^{-U-V} \mathcal{B}_{A-U+V-, B-V+U^{-}}(1) d t+O\left(T^{1-\delta}\right)$
where

$$
\mathcal{B}_{A, B}(s)=\sum_{n=1}^{\infty} \frac{\tau_{A}(m) \tau_{B}(m)}{m^{s}}
$$

Conjecture (C, Farmer, Keating, Rubinstein, Snaith)

$$
\begin{aligned}
& \int_{0}^{T}|\zeta(1 / 2+i t)|^{6} d t \\
& \quad=\int_{0}^{T} P_{3}\left(\log \frac{t}{2 \pi}\right) d t+O\left(T^{1 / 2+\epsilon}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
P_{3}(x)= & 0.000005708527034652788398376841445252313 x^{9} \\
& +0.00040502133088411440331215332025984 x^{8} \\
& +0.011072455215246998350410400826667 x^{7} \\
& +0.14840073080150272680851401518774 x^{6} \\
& +1.0459251779054883439385323798059 x^{5} \\
& +3.984385094823534724747964073429 x^{4} \\
& +8.60731914578120675614834763629 x^{3} \\
& +10.274330830703446134183009522 x^{2} \\
& +6.59391302064975810465713392 x \\
& +0.9165155076378930590178543
\end{aligned}
$$

$$
\begin{array}{r}
\int_{0}^{2350000}|\zeta(1 / 2+i t)|^{6} d t \\
=3317496016044.9
\end{array}
$$

whereas

$$
\begin{aligned}
& \int_{0}^{2350000} P 3\left(\log \frac{t}{2 \pi}\right) d t \\
&=3317437762612.4
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\int_{0}^{2350000} 42 a_{3} & \left(\log \frac{t}{2 \pi}\right)^{9} \frac{d t}{9!} \\
& =72925964550.05
\end{aligned}
$$

$3317496016044.9 / 72925964550.05=45.49$

Other Moments

Quadratic Dirichlet L-functions
First moment: Jutila; Goldfeld and Hoffstein

Second moment: Jutila

Diaconu, Goldfeld, Hoffstein

Third moment: Soundararajan; Diaconu, Goldfield, Hoffstein;
Zhang; Diaconu \& Whitehead: with an extra main term!

Over function fields: Hoffstein and Rosen; Bucur and Diaconu; Florea; Diaconu

GL2(Q) automorphic L-functions

Bucur

Florea

Good; Duke, Iwaniec \& Sarnak; Kowalski, Michel and vanderKam
Dirichlet L-functions
Second moment (Selberg, Heath-Brown)
Fourth moment (Heath-Brown, Young)

6th moment of Dirichlet L-functions averaged over chi and q (C, Iwaniec and Soundararajan (with a mild t average) Matomaki and Radziwill (without t average)

8th moment of Dirichlet L-functions averaged over chi and q
(Chandee, Li, Radziwill)
Soundararajan, upper bounds on RH

Adam Harper, sharp upper bounds on RH

Hughes and Young; mollified 4th moment

Many many other averages

Ratios

Farmer (1995) conjectured that for small $\alpha, \beta, \gamma, \delta$ with $\Re \gamma, \Re \delta>0$

$$
\begin{aligned}
& \int_{0}^{T} \frac{\zeta(s+\alpha) \zeta(1-s+\beta)}{\zeta(s+\gamma) \zeta(1-s+\delta)} d t \\
& \sim T \frac{(\alpha+\gamma)(\beta+\delta)}{(\alpha+\beta)(\gamma+\delta)}-T^{1-\alpha-\beta} \frac{(-\beta+\gamma)(-\alpha+\delta)}{(\alpha+\beta)(\gamma+\delta)}
\end{aligned}
$$

Zirnbauer knew that

$$
\begin{aligned}
\int_{U(N)} & \frac{\wedge_{A}\left(e^{-\alpha}\right) \wedge_{A^{*}}\left(e^{-\beta}\right)}{\wedge_{A}\left(e^{-\gamma}\right) \wedge_{A^{*}}\left(e^{-\delta}\right)} d A \\
& =\frac{z(\alpha+\beta) z(\gamma+\delta)}{z(\alpha+\delta) z(\beta+\gamma)}+e^{-N(\alpha+\beta)} \frac{z(-\alpha-\beta) z(\gamma+\delta)}{z(-\beta+\delta) z(-\alpha+\gamma)}
\end{aligned}
$$

where

$$
\wedge_{A}(s)=\prod_{n=1}^{N}\left(1-s e^{-i \theta_{n}}\right)
$$

and

$$
z(x)=\frac{1}{1-e^{-x}}
$$

Ratios conjecture (Conrey, Farmer, Zirnbauer; 2007)

$$
\text { Let } \Re \gamma, \Re \delta>0 \text { and } \Im \alpha, \Im \beta, \Im \gamma, \Im \delta \ll T^{1-\epsilon} \text {. Let } s=1 / 2+i t \text {. Then }
$$

$$
\begin{aligned}
& \int_{0}^{T} \frac{\zeta(s+\alpha) \zeta(1-s+\beta)}{\zeta(s+\gamma) \zeta(1-s+\delta)} d t \\
& =\int_{0}^{T}\left(\frac{\zeta(1+\alpha+\beta) \zeta(1+\gamma+\delta)}{\zeta(1+\alpha+\delta) \zeta(1+\beta+\gamma)} A_{\zeta}(\alpha, \beta, \gamma, \delta)\right. \\
& \left.\quad+\left(\frac{t}{2 \pi}\right)^{-\alpha-\beta} \frac{\zeta(1-\alpha-\beta) \zeta(1+\gamma+\delta)}{\zeta(1-\beta+\delta) \zeta(1-\alpha+\gamma)} A_{\zeta}(-\beta,-\alpha, \gamma, \delta)\right) d t \\
& \quad+O\left(T^{1 / 2+\epsilon}\right)
\end{aligned}
$$

Euler Product

The Euler product A is given by

$$
A_{\zeta}(\alpha, \beta, \gamma, \delta)=\prod_{p} \frac{\left(1-\frac{1}{p^{1+\gamma+\delta}}\right)\left(1-\frac{1}{p^{1+\beta+\gamma}}-\frac{1}{p^{1+\alpha+\delta}}+\frac{1}{p^{1+\gamma+\delta}}\right)}{\left(1-\frac{1}{p^{1+\beta+\gamma}}\right)\left(1-\frac{1}{p^{1+\alpha+\delta}}\right)}
$$

Leonhard
Euler

RATIOS THEOREM (UNITARY)

$$
\mathcal{R}(A, B ; C, D):=\int_{U(N)} \frac{\prod_{\alpha \in A} \Lambda_{X}\left(e^{-\alpha}\right) \prod_{\beta \in B} \Lambda_{X^{*}}\left(e^{-\beta}\right)}{\prod_{\gamma \in C} \Lambda_{X}\left(e^{-\gamma}\right) \prod_{\delta \in D} \Lambda_{X^{*}}\left(e^{-\delta}\right)} d X
$$

with $\Re \gamma>0, \Re \delta>0$.

$$
Z(A, B):=\prod_{\substack{\alpha \in A \\ \beta \in B}} z(\alpha+\beta),
$$

where $z(x)=\left(1-e^{-x}\right)^{-1}$.

$$
Z(A, B ; C, D):=\frac{Z(A, B) Z(C, D)}{Z(A, D) Z(B, C)}
$$

Ratios Theorem:

$$
\begin{aligned}
& \mathcal{R}(A, B ; C, D) \\
& \quad=\sum_{\substack{S \subset A, T \subset B \\
|S|=|T|}} e^{-N\left(\sum_{\alpha \in S} \alpha+\sum_{\beta \in T} \beta\right)} Z\left(A-S+T^{-}, B-T+S^{-} ; C, D\right) .
\end{aligned}
$$

RATIOS THEOREM (SYMPLECTIC)

Theorem (CFZ). Suppose $N \geq Q$. Then

$$
\begin{aligned}
& \int_{U S p(2 N)} \frac{\prod_{k=1}^{K} \wedge_{A}\left(e^{-\alpha_{k}}\right)}{\prod_{q=1}^{Q} \wedge_{A}\left(e^{\left.-\gamma_{q}\right)}\right.} d A \\
& \quad=\sum_{\varepsilon \in\{-1,1\}^{K}} e^{N \sum_{k=1}^{K}\left(\varepsilon_{k} \alpha_{k}-\alpha_{k}\right)} \frac{\Pi_{1 \leq j \leq k \leq K} z\left(\varepsilon_{j} \alpha_{j}+\varepsilon_{k} \alpha_{k}\right) \prod_{1 \leq q<r \leq Q} z\left(\gamma_{q}+\gamma_{r}\right)}{\prod_{k=1}^{K} \Pi_{q=1}^{Q} z\left(\varepsilon_{k} \alpha_{k}+\gamma_{q}\right)} .
\end{aligned}
$$

RATIOS THEOREM (ORTHOGONAL)

Theorem (CFZ). Suppose $N \geq Q$. Then

$$
\begin{aligned}
& \int_{S O(2 N)} \frac{\prod_{k=1}^{K} \wedge_{A}\left(e^{-\alpha_{k}}\right)}{\prod_{q=1}^{Q} \wedge_{A}\left(e^{-\gamma_{q}}\right)} d A \\
& \quad=\sum_{\varepsilon \in\{-1,1\}^{K}} e^{N \sum_{k=1}^{K}\left(\varepsilon_{k} \alpha_{k}-\alpha_{k}\right) \frac{\prod_{1 \leq j<k \leq K} z\left(\varepsilon_{j} \alpha_{j}+\varepsilon_{k} \alpha_{k}\right) \prod_{1 \leq q \leq r \leq Q} z\left(\gamma_{q}+\gamma_{r}\right)}{\prod_{k=1}^{K} \prod_{q=1}^{Q} z\left(\varepsilon_{k} \alpha_{k}+\gamma_{q}\right)} .} .
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{S O(2 N+1)} \frac{\prod_{k=1}^{K} \wedge_{A}\left(e^{-\alpha_{k}}\right)}{\prod_{q=1}^{Q} \wedge_{A}\left(e^{-\gamma_{q}}\right)} d A \\
& \quad=\sum_{\varepsilon \in\{-1,1\}^{K}}\left(\prod_{j=1}^{K} \varepsilon_{j}\right) e^{(N+1 / 2) \sum_{k=1}^{K}\left(\varepsilon_{k} \alpha_{k}-\alpha_{k}\right) \frac{\prod_{1 \leq j<k \leq K} z\left(\varepsilon_{j} \alpha_{j}+\varepsilon_{k} \alpha_{k}\right) \prod_{1 \leq q \leq r \leq Q} z\left(\gamma_{q}+\gamma_{r}\right)}{\prod_{k=1}^{K} \prod_{q=1}^{Q} z\left(\varepsilon_{k} \alpha_{k}+\gamma_{q}\right)} .} .
\end{aligned}
$$

Ratios conjecture (zeta)

Let $Z_{\zeta}(A, B)=\prod_{\substack{\alpha \in A \\ \beta \in B}} \zeta(1+\alpha+\beta)$ and

$$
Z_{\zeta}(A, B ; C, D):=\frac{Z_{\zeta}(A, B) Z_{\zeta}(C, D)}{Z_{\zeta}(A, D) Z_{\zeta}(B, C)} .
$$

Further, let

$$
\mathcal{A}_{\zeta}(A, B ; C, D)=\prod_{p} Z_{p}(A, B ; C, D) \int_{0}^{1} \mathcal{A}_{p, \theta}(A, B ; C, D) d \theta
$$

where $z_{p}(x):=\left(1-p^{-x}\right)^{-1}, Z_{p}(A, B)=\prod_{\substack{\alpha \in A \\ \beta \in B}} z_{p}(1+\alpha+\beta)^{-1}$ and

$$
Z_{p}(A, B ; C, D):=\frac{Z_{p}(A, B) Z_{p}(C, D)}{Z_{p}(A, D) Z_{p}(B, C)}
$$

and

$$
\mathcal{A}_{p, \theta}(A, B ; C, D):=\frac{\prod_{\alpha \in A} z_{p,-\theta}\left(\frac{1}{2}+\alpha\right) \prod_{\beta \in B} z_{p, \theta}\left(\frac{1}{2}+\beta\right)}{\prod_{\gamma \in C} z_{p,-\theta}\left(\frac{1}{2}+\gamma\right) \prod_{\delta \in D} z_{p, \theta}\left(\frac{1}{2}+\delta\right)}
$$

with $z_{p, \theta}(x):=\left(1-e(\theta) p^{-x}\right)^{-1}$.

Application to pair correlation

Empirical minus expected, $\mathrm{N}=10^{\wedge} 23,2^{*} 10^{\wedge} 8$ zeros

Bogomolny and Keating

Eugene

Bogomolny

Theorem (Conrey and Snaith 2007) : Assuming a uniform version of the ratios conjecture,

$$
\begin{aligned}
& \sum_{\gamma, \gamma^{\prime}}^{\prime} f\left(\gamma-\gamma^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \int_{0}^{T} f(r) \int_{-T}^{T}\left(\log ^{2} \frac{t}{2 \pi}+2\left(\frac{\zeta^{\prime}}{\zeta}\right)^{\prime}(1+i r)\right. \\
& \left.\quad+2\left(\frac{t}{2 \pi}\right)^{-i r} \zeta(1-i r) \zeta(1+i r) A(i r)-2 B(i r)\right) d r d t+O\left(T^{1 / 2+\epsilon}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A(\eta)=\prod_{p} \frac{\left(1-\frac{1}{p^{1+\eta}}\right)\left(1-\frac{2}{p}+\frac{1}{p^{1+\eta}}\right)}{\left(1-\frac{1}{p}\right)^{2}} \\
& B(\eta)=\sum_{p}\left(\frac{\log p}{p^{1+\eta}-1}\right)^{2}
\end{aligned}
$$

Difference between theory and numerics:

One can do the same approach for pair correlation for RMT, using the ratios theorem. One winds up with
$\int_{U(N)} \sum_{1 \leq j, k \leq N} f\left(\theta_{j}, \theta_{k}\right) d U_{N}=\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(N^{2}+J\left(i \theta_{1} ;-i \theta_{2}\right)+J\left(-i \theta_{1} ; i \theta_{2}\right)\right) d \theta_{1} d \theta_{2}$
where

$$
J(a ; b)=\left(\frac{z^{\prime}}{z}\right)^{\prime}(a+b)+e^{-N(a+b)} z(a+b) z(-a-b)
$$

This is

$$
\operatorname{det}\left(\begin{array}{cc}
N & S_{N}(u-v) \\
S_{N}(v-u) & N
\end{array}\right)
$$

where recall that

$$
S_{N}(\theta)=\frac{\sin \frac{N \theta}{2}}{\sin \frac{\theta}{2}}
$$

Hejhal, 1994 - triple correlation

$$
\sum_{\gamma_{1}, \gamma_{2}, \gamma_{3} \in[T, 2 T]} w\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) f\left(\frac{\log T}{2 \pi}\left(\gamma_{1}-\gamma_{2}\right), \frac{\log T}{2 \pi}\left(\gamma_{1}-\gamma_{3}\right)\right)
$$

$$
\begin{gathered}
=\frac{T \log T}{2 \pi}\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u, v)\left|\begin{array}{ccc}
1 & S(u) & S(v) \\
S(u) & 1 & S(u-v) \\
S(v) & S(u-v) & 1
\end{array}\right| d u d v\right. \\
+o(1))
\end{gathered}
$$

where the Fourier transform of f has support on the hexagon with vertices $(1,0),(0,1),(-1,1),(-1,0),(0,-1),(1,-1)$, and

$$
S(u)=\frac{\sin (\pi u)}{\pi u}
$$

RMT triple correlation (N. Snaith)

$$
\begin{aligned}
& \sum_{0<\gamma_{1}, \gamma_{2}, \gamma_{3}<T} f\left(\gamma_{1}-\gamma_{2}, \gamma_{2}-\gamma_{3}\right)=\frac{6 \pi^{2}}{(2 \pi)^{3}} \int_{0}^{T} f(0,0) \log \frac{t}{2 \pi} d t \\
& +\frac{3}{(2 \pi)^{2}} \int_{-T}^{T} f(v, 0) \int_{0}^{T} \log ^{2} \frac{t}{2 \pi}+2\left(\left(\frac{\zeta^{\prime}}{\zeta}\right)^{\prime}(1+i v)\right. \\
& \left.\quad+\left(\frac{t}{2 \pi}\right)^{-i v} \zeta(1+i v) \zeta(1-i v) A(i v)-B(i v)\right) d t d v \\
& +\frac{1}{(2 \pi)^{3}} \int_{-T}^{T} \int_{-T}^{T} f(u, v) \int_{0}^{T} \log ^{3} \frac{t}{2 \pi} \\
& +6 \\
& +\log \frac{t}{2 \pi}\left(\left(\frac{\zeta^{\prime}}{\zeta}\right)^{\prime}(1+i u-i v)\right. \\
& \left.\quad+\left(\frac{t}{2 \pi}\right)^{-i u+i v} \zeta(1+i u-i v) \zeta(1-i u+i v) A(i u-i v)-B(i u-i v)\right) \\
& +6
\end{aligned} \quad\left(Q(i u, i v)+2\left(\frac{t}{2 \pi}\right)^{-i u} \zeta(1-i u) \zeta(1+i u) .\right.
$$

A, B, Q, P are expressions involving primes
(see Bogomolny, Keating, Phys.Rev.Lett., 1996)

Applications to lower order terms in one-level densities

Let $L\left(s, \chi_{d}\right)$ be a real, primitive, Dirichlet character of conductor $|d|$. If $1 / 4>\Re \gamma>0,|\Re \alpha|<$ $1 / 4$, and $\Im \alpha, \Im \gamma \ll X^{1-\epsilon}$, then we conjecture that:

$$
\begin{aligned}
R_{D}(\alpha ; \gamma)= & \sum_{d \leq X} \frac{L\left(1 / 2+\alpha, \chi_{d}\right)}{L\left(1 / 2+\gamma, \chi_{d}\right)}=\sum_{d \leq X}\left(\frac{\zeta(1+2 \alpha)}{\zeta(1+\alpha+\gamma)} A_{D}(\alpha ; \gamma)\right. \\
& \left.+\left(\frac{d}{\pi}\right)^{-\alpha} \frac{\Gamma(1 / 4-\alpha / 2)}{\Gamma(1 / 4+\alpha / 2)} \frac{\zeta(1-2 \alpha)}{\zeta(1-\alpha+\gamma)} A_{D}(-\alpha ; \gamma)\right)+O\left(X^{1 / 2+\epsilon}\right)
\end{aligned}
$$

where

$$
A_{D}(\alpha ; \gamma)=\prod_{p}\left(1-\frac{1}{p^{1+\alpha+\gamma}}\right)^{-1}\left(1-\frac{1}{(p+1) p^{1+2 \alpha}}-\frac{1}{(p+1) p^{\alpha+\gamma}}\right)
$$

Assuming the ratios conjecture and that $\frac{1}{\log X} \ll$ $\Re r<\frac{1}{4}$ and $\Im r \ll X^{1-\epsilon}$ we have

$$
\begin{aligned}
& \sum_{d \leq X} \frac{L^{\prime}\left(1 / 2+r, \chi_{d}\right)}{L\left(1 / 2+r, \chi_{d}\right)} \\
& \quad=\sum_{d \leq X}\left(\frac{\zeta^{\prime}(1+2 r)}{\zeta(1+2 r)}+A_{D}^{\prime}(r ; r)-\left(\frac{d}{\pi}\right)^{-r} \frac{\Gamma(1 / 4-r / 2)}{\Gamma(1 / 4+r / 2)} \zeta(1-2 r) A_{D}(-r ; r)\right) \\
& \quad+O\left(X^{1 / 2+\epsilon}\right)
\end{aligned}
$$

One-level density (C and Snaith)

Assuming the ratios conjecture, we have

$$
\begin{aligned}
& \sum_{d \leq X} \sum_{\gamma_{d}} f\left(\gamma_{d}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(t) \sum_{d \leq X}\left(\log \frac{d}{\pi}+\frac{1}{2} \frac{\Gamma^{\prime}}{\Gamma}(1 / 4+i t / 2)+\frac{1}{2} \frac{\Gamma^{\prime}}{\Gamma}(1 / 4-i t / 2)+\right. \\
& \left.2\left(\frac{\zeta^{\prime}(1+2 i t)}{\zeta(1+2 i t)}+A_{D}^{\prime}(i t ; i t)-\left(\frac{d}{\pi}\right)^{-i t} \frac{\Gamma(1 / 4-i t / 2)}{\Gamma(1 / 4+i t / 2)} \zeta(1-2 i t) A_{D}(-i t ; i t)\right)\right) d t \\
& +O\left(X^{1 / 2+\epsilon}\right)
\end{aligned}
$$

where
$A_{D}(-r ; r)=\prod_{p}\left(1-\frac{1}{(p+1) p^{1-2 r}}-\frac{1}{p+1}\right)\left(1-\frac{1}{p}\right)^{-1}$,
and

$$
A_{D}^{\prime}(r ; r)=\sum_{p} \frac{\log p}{(p+1)\left(p^{1+2 r}-1\right)}
$$

Michael Rubinstein and Pang Gao investigated n-level densities for this family.

Zeros of quadratic L-functions

The ratios conjecture implies the theta = infinity conjecture, which in turn implies RH

Steve Gonek

Bettin, Gonek (2017)
"The $\theta=\infty$ conjecture implies the Riemann hypothesis"

Sandro Bettin

Other density results

Rubinstein (2001): n-level density for quadratic L-functions, support of $f<1$
Gao (2005): n-level density for quadratic L-functions, support of $f<1$

Entin, Roddity Gershon, Rudnick (2013)
combinatorics of n -level for quadratic
L-functions using function fields
Mason and Snaith (2016)
combinatorics of n -level for orthogonal and symplectic L-families using RMT
> 20 papers on the arxiv with "low-lying zeros" in the title since 1995 by Alpoge, Amersi, Baier, Chandee, Cho, Duenez, Fiorilli, Gao, Hughes, Iyer, Lazarov, Lee, Levinson, Liu, Mackall, Miller, Park, Parks, Peckner, Rapti, Ricotta, Royer, Shin, Sodergren, Templier, Turner-Butterbaugh, Winsor, Young, Zhang, Zhao

Moments of long Dirichlet polynomials

$$
\int_{0}^{T}\left|\sum_{n \leq X} \frac{d(n)}{n^{1 / 2+i t}}\right|^{2} d t \sim M_{2}(\alpha) \frac{T}{2 \pi^{2}} \log ^{4} T
$$

where $\quad X=T^{\alpha} \quad$ and

$$
M_{2}(\alpha)= \begin{cases}\alpha^{4} & \text { if } 0<\alpha<1 \\ -\alpha^{4}+8 \alpha^{3}-24 \alpha^{2}+32 \alpha-14 & \text { if } 1<\alpha<2 \\ 2 & \text { if } \alpha>2\end{cases}
$$

Figure 2. The plot of $M_{3}(\alpha)$ for $0<\alpha<3$.

Figure 3. The plot of $M_{4}(\alpha)$ for $0<\alpha<4$.

Goldston and Gonek (1998) "Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series"

Keating, Roddity-Gershon, Rodgers, Rudnick "Sums of divisor functions in Fq[t] and matrix integrals" (2018)

Rodgers, Soundararajan (2018) "The variance of divisor sums in arithmetic progressions"

Basor, Ge, and Rubinstein (2018) "Some multidimensional integrals in number and connections with the Painleve V equation"

Bettin, private communication (2017)

Conrey, Keating (2015-2018) "Moments of zeta and divisor correlations, I-V"

Let

$$
\zeta(s)^{k}=\sum_{n=1}^{\infty} \frac{d_{k}(n)}{n^{s}}
$$

and

$$
\Lambda_{U}(s)^{k}=\sum_{n \leq N k} \delta_{k, U}(n) s^{n}
$$

We conjecture that

$$
\frac{1}{T L^{k^{2}} a_{k}} \int_{0}^{T}\left|\sum_{n \leq T^{\alpha}} \frac{d_{k}(n)}{n^{1 / 2+i t}}\right|^{2} d t
$$

and

$$
\frac{1}{N^{k^{2}}} \int_{U(N)}\left|\sum_{n \leq \alpha N} \delta_{k, U}(n)\right|^{2} d U
$$

are asymptotically equal.
Bettin proved that the moment conjecture implies this.

However

$$
\begin{aligned}
& \frac{1}{N^{k^{2}}} \int_{U(N)}\left|\sum_{n \leq \alpha N} \delta_{k, U}(n)\right|^{2} d U \\
= & \frac{1}{N^{k^{2}}} \int_{U(N)} \sum_{n \leq \alpha N}\left|\delta_{k, U}(n)\right|^{2} d U
\end{aligned}
$$

whereas

$$
\frac{1}{T L^{k^{2}} a_{k}} \int_{0}^{T}\left|\sum_{n \leq T^{\alpha}} \frac{d_{k}(n)}{n^{1 / 2+i t}}\right|^{2} d t
$$

is not asymptotic to

$$
\frac{1}{T L^{k^{2}} a_{k}} \int_{0}^{T} \sum_{n \leq T^{\alpha}}\left|\frac{d_{k}(n)}{n^{1 / 2+i t}}\right|^{2} d t
$$

Divisor correlations

We need information about

$$
\sum_{n \leq X} \tau_{A}(n) \tau_{B}(n+h)
$$

The delta method of Duke, Friedlander and Iwaniec (1993) can provide the needed conjecture.

Henryk Iwaniec

Delta method conjecture

$$
\begin{aligned}
& \left\langle\tau_{A}(m) \tau_{B}(n)\right\rangle_{m=u}^{(*)} \\
& \quad \sim \frac{1}{M} \sum_{q=1}^{\infty} r_{q}(h)\left\langle\tau_{A}(m) e(m N / q)\right\rangle_{m=u}\left\langle\tau_{B}(n) e(n M / q)\right\rangle_{n=\frac{u N}{M}}
\end{aligned}
$$

where $\quad(*): m M-n N=h$

$$
\left\langle\tau_{A}(m) e(m N / q)\right\rangle_{m=u}=\frac{1}{2 \pi i} \int_{|w-1|=\epsilon} D_{A}\left(w, e\left(\frac{N}{q}\right)\right) u^{w-1} d w
$$

where

$$
D_{A}\left(w, e\left(\frac{N}{q}\right)\right)=\sum_{n=1}^{\infty} \frac{\tau_{A}(n) e(n N / q)}{n^{w}} .
$$

The poles of this Dirichlet series can be determined by replacing the exponential by Dirichlet characters and finding the coefficient of the trivial character (i.e. zeta).

Assuming delta-conjecture

$$
\begin{aligned}
\int_{0}^{\infty} \psi\left(\frac{t}{T}\right) & \sum_{\substack{m \leq T^{r} \\
n \leq T^{r}}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{m n}}\left(\frac{m}{n}\right)^{i t} d t \\
= & \int_{0}^{\infty} \psi\left(\frac{t}{T}\right)\left(\mathcal{B}_{A, B}\left(1 ; T^{r}\right)\right. \\
& \left.+\sum_{\substack{\alpha \in A \\
\beta \in B}}\left(\frac{t}{2 \pi}\right)^{-\alpha-\beta} \mathcal{B}_{A^{\prime}, B^{\prime}}\left(1 ; T^{r}\right)\right)
\end{aligned}
$$

$+O\left(T^{1-\delta}\right)$ where $1 \leq r<2$ and

$$
A^{\prime}=A-\{\alpha\} \cup\{-\beta\}, B^{\prime}=B-\{\beta\} \cup\{-\alpha\}
$$

What if $r>2$?

$$
\text { Say } \ell<r<\ell+1
$$

Identity

Suppose that

$$
\begin{aligned}
& A=A_{1} \cup \cdots \cup A_{\ell} \\
& B=B_{1} \cup \cdots \cup B_{\ell}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{m=n} & \frac{\tau_{A}(m) \tau_{B}(n)}{m^{s} n^{z}} \\
& =\sum_{\substack{M_{1} \ldots M_{\ell}=N_{1} \ldots N_{\ell} \\
\left(M_{i}, N_{i}\right)=1}} \prod_{j=1}^{\ell}\left(\sum_{M_{j} m_{j}=N_{j} n_{j}} \frac{\tau_{A_{j}}\left(m_{j}\right) \tau_{B_{j}}\left(n_{j}\right)}{m_{j}^{s} n_{j}^{z}}\right)
\end{aligned}
$$

Conrey - Keating approach

$$
\sum_{m, n<T^{r}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{m n}} \hat{\psi}\left(\frac{T}{2 \pi} \log \frac{m}{n}\right)
$$

is related to

$$
\sum_{\substack{A=A_{1} \cup \ldots \cup A_{\ell} \\ B=B_{1} \cup \cdots \cup B_{\ell}}} \sum_{\substack{M_{1} \ldots M_{\ell}=N_{1} \ldots N_{\ell} \\\left(M_{i}, N_{i}\right)=1}} \prod_{j=1}^{\ell}\left(\sum_{m_{j}, n_{j}} \frac{\tau_{A_{j}}\left(m_{j}\right) \tau_{B_{j}}\left(n_{j}\right)}{\sqrt{m n}}\right) \hat{\psi}\left(\frac{T}{2 \pi} \log \frac{m_{1} \ldots m_{\ell}}{n_{1} \ldots n_{\ell}}\right)
$$

We need to average over

$$
*\left\{\begin{array}{ccc}
M_{1} m_{1} & = & N_{1} n_{1}+h_{1} \\
& \cdots & \\
M_{\ell} m_{\ell} & = & N_{\ell} n_{\ell}+h_{\ell}
\end{array}\right\}
$$

weighted by divisor coefficients. Note that

$$
\hat{\psi}\left(\frac{T}{2 \pi} \log \frac{m_{1} \ldots m_{\ell}}{n_{1} \ldots n_{\ell}}\right) \sim \hat{\psi}\left(\frac{T}{2 \pi} \sum \frac{h_{i}}{n_{i} N_{i}}\right)
$$

Connecting divisor correlations and the recipe

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{(2)} X^{s}\left(\frac{T}{2 \pi}\right)^{-\ell s} \sum_{\substack{\left(M_{1}, N_{1}\right) \geq=\left(M_{\mathcal{N}} \\
N_{1} 1 \\
\epsilon_{j} \in\left\{=1, N_{\ell}\right)=1,+1\right\}}} \int_{\left.0<M_{\ell}\right)} \int_{0<v_{1}, \ldots, v_{\ell}<\infty} \hat{\psi}\left(\epsilon_{1} v_{1}+\cdots+\epsilon_{\ell} v_{\ell}\right) \\
& \prod_{j=1}^{\ell}\left[\frac{1}{(2 \pi i)^{2}} \iint_{\substack{w_{j}-1|=\epsilon\\
| z_{j}-1 \mid=\epsilon}} M_{j}^{-z_{j}} N_{j}^{s+1-w_{j}} \sum_{h_{j}, q_{j}} \frac{r_{q_{j}}\left(h_{j}\right)}{s+2-w_{j}-z_{j}} v_{j}^{s+1-w_{j}-z_{j}}\right. \\
& \left.D_{A_{j}}\left(w_{j}, e\left(\frac{N_{j}}{q_{j}}\right)\right) D_{B_{j}}\left(z_{j}, e\left(\frac{M_{j}}{q_{j}}\right)\right)\left(\frac{T}{2 \pi}\right)^{w_{j}+z_{j}-2} d w_{j} d z_{j} d v_{j}\right] \frac{d s}{s}
\end{aligned}
$$

$$
\begin{aligned}
& \times \mathcal{B}\left(A_{s}-U(\ell)_{s}+V(\ell)^{-}, B-V(\ell)+U(\ell)_{s}{ }^{-}, 1\right) d t \frac{d s}{s}
\end{aligned}
$$

where $U(\ell)$ denotes a set of cardinality ℓ with precisely one element from each of A_{1}, \ldots, A_{ℓ} and similarly $V(\ell)$ denotes a set of cardinality ℓ with precisely one element from each of B_{1}, \ldots, B_{ℓ}.

Automorphisms

If we sum this over all the ways to split up A and B we get what the recipe predicts times a factor

$$
\ell^{2 k-2 \ell}
$$

But this is the number of automorphisms of the *-system.

Wooley has pointed out the connection with counting points on varieties and Manin's idea of counting points on certain varieties by counting points on a stratified set of subvarieties; this idea may be relevant here.

Y. I.Manin

Trevor Wooley

Symplectic Identity

If $\quad A=A_{1} \cup \cdots \cup A_{\ell}$
then

$$
\sum_{r=\square} \frac{\tau_{A}(r)}{r^{s}}=\sum_{M_{1} \ldots M_{\ell}=\square} \prod_{j=1}^{\ell} \mu^{2}\left(M_{j}\right) \sum_{M_{j} r_{j}=\square} \frac{\tau_{A_{j}}\left(r_{j}\right)}{r_{j}^{s}}
$$

Ranks of elliptic curves

Which integers m are the sum of two rational cubes?

Which integers m are the sum of two rational cubes?

$$
6=\left(\frac{37}{21}\right)^{3}+\left(\frac{17}{21}\right)^{3}
$$

346 is the sum of two rational cubes
$346=$
$\left(\frac{47189035813499932580169103856786964321592777067}{8106695117451325702581978056293186703694064735}\right)^{3}$
$+$
$\left(\frac{42979005685698193708286233727941595382526544683}{8106695117451325702581978056293186703694064735}\right)^{3}$

The number g of generators and the basic solutions of the equation $X^{3}+Y^{3}=A Z^{3}$, A cubefree and $\leqq 500$.

A	g	(X, Y, Z)	A	g	(X, Y, Z)
6	1	(37, 17, 21)	90	1	($\mathrm{t} 24 \mathrm{~T},-431,273$)
7	1	(2, -1, 1)	91	2	4. 3, r), (6, -5, 1)
9	1	(2, 1, 1)	92	1	(25 903, -3 547, 5733)
12	1	(89, 19, 39)	94	1	(ry 642 626 696 646 177.
13	1	(7, 2, 3)			${ }^{-15} 616 \mathrm{I}_{4} 186396177$.
15	\pm	(683, 397, 294)			590736058375 ogo)
17	1	(18, -1, 7)	97	1	$\left[4_{4},-5,3\right]$
19	2	(3, -2, 1), (5, 3, 2)	98	1	(5, -3, t)
20	1	(19. 1, 7)	103	1	(592, -349, 117)
22	1	($25.469,17$ 299, 9 954)	105	1	4.4033.3527, 1014)
26	1	(3. -1, 1)	106	1	(165 889, -140 131, 25 767)
28	1	(3, 1, 1)	107	1	[90, 17, 19)
30	2	(163, 107, 57), (289, -19, 93)	120	2	($\left.181,7{ }^{1}, 37\right),(629,251,134)$
31	1	($137,-65,42$)	114	1	(9 509, $-901,{ }^{\text {8 }} 878$)
33	1	(1853. 523. 582)	115	1	(5266097, -2 741 6r7, 1029364)
34	1	(631, -399, 182)	117	I	(5. $-2,1$)
35	1	(3, 2, 1)	123	1	$\left(184223499\right.$ 139. $161834^{12} 86 \mathrm{r}$,
37	2	[4, -3, 1), (10, -1, 3)			37045412880)
42	I	449, -71, 129)	124	2	(5, -5, 5), (479, -443. 57)
43	I	(7, 2, 2)	126	2	$(5,1,1),(72,-23,24)$
49	I	(15, -2, 3)	127	2	(7, -6, -1) , (225, -120, 7)
50	1	(23417, -51 267,6 112)	130	1	(52 954 777. 33728 ± 83.11285694)
51	1	(72>515, $6264 \mathrm{I}, 197028$)	132	2	($2 \mathrm{oBg},-901,399),(39007,-29503,6342)$
53	I	(1 $\left.8_{72},-1819,217\right)$	233	1	(5, 2, 2)
58	1	(28 747, -14653, 7083)	234	1	$(9,7,2)$
6r	I	($5,-4,2)$	239	1	($\times 6,-7,3)$
62	1	($\mathrm{x}, 7,7,3$)	140	1	(27 397, 6 623, 5 301)
63	1	(4, -1, 2)	141	1	(53 579 249, -52 310 249, 4230030)
65	2	(4, 1, 1), (191, -146, 39)	142	1	(2454 839. 1858411,530595$)$
67	1	(5 353. 2 208, 1323)	${ }^{143}$	1	(73, 15, 14)
68	1	(2538 I_{3}, -472 663, 620 505)	${ }^{151}$	I	$(338,-95,63)$
69	I	($55409,-1044 \mathrm{t}, 33^{18}$)	153	2	(70, -19, 13), (107, -56, 19)
70	1	(53, 17, 13)	156	4	[2 627, -1 223, 471]
71	1	(197, -126, 43)	157	1	(199964 857, -19767 319, 1142 148)
75	1	(17 351, -11 951, 3 606)	${ }^{2} 59$	1	((103 750 849, 2269079,19 151 118)
78	1	(5563. 53, 1 302)	161		(39, -16, 7)
79	1	(13, -4, 3)	163	2	(II, -3, 2), ($\mathbf{7} 7,-8,3$)
84	1	433, 323, 112)	164	1	(311 155001, -236283 589.
8_{5}	I	(2 570 129, -2 404 889, 330.498)			$4^{69913867)}$
86	2	(13. 5. 3), (10067, -10 049. 399)	166	1	(1 374582733040071 ,
${ }^{8} 7$	1	(1 $2764986 \mathrm{tz},-9079296 \mathrm{tr}, 216266610)$			$-12950388164^{28} 439$.
89	1	(53, 36, 13$)$			136834628063958)

Selmer's table of A for which $x^{3}+y^{3}=A$

has infinitely many solutions

If m is squarefree and $m \equiv 4,7,8$ mod 9 then it is believed that there will always be a solution of $x^{3}+y^{3}=m$. If m is 1,2 , or $5 \bmod 9$, then solutions are believed to be rare.

Conjecture from random matrix theory:
"Rare" solutions with m congruent to 2 mod 7 are exactly twice as likely as rare solutions with m congruent to 3 mod 7.

Watkins computed data for m up to ten million. What he found suggests that there are 125728 values of m congruent to 2 modulo 7 and only 59440 m congruent to 3 modulo 7 for which $x^{3}+y^{3}=m$ has a solution (m restricted to 1,2 , or $5 \bmod 9$).

$$
\frac{125728}{59440}=2.11
$$

This conjecture depends fundamentally on RMT!

Mark Watkins

$$
\begin{aligned}
M_{U, N}(s) & =\int_{U(N)}|\operatorname{det}(A-I)|^{s} d A \\
& =\prod_{j=1}^{N} \frac{\Gamma(j) \Gamma(j+s)}{\Gamma(j+s / 2)^{2}},
\end{aligned}
$$

$$
\begin{aligned}
M_{S p, 2 N}(s) & =\int_{S p(2 N)}|\operatorname{det}(A-I)|^{s} d A \\
& =2^{2 N s} \prod_{j=1}^{N} \frac{\Gamma(1+N+j) \Gamma(1 / 2+s+j)}{\Gamma(1 / 2+j) \Gamma(1+s+N+j)} \\
M_{O, 2 N}(s) & =\int_{O(2 N)}|\operatorname{det}(A-I)|^{s} d A \\
& =2^{N s} \prod_{j=1}^{N} \frac{\Gamma(N+j-1) \Gamma(s+j-1 / 2)}{\Gamma(j-1 / 2) \Gamma(s+j+N-1)}
\end{aligned}
$$

CKRS, Watkins

By random matrix theory (using discretization and the complex moments of characteristic polynomials of orthogonal matrices) we expect rank two curves to occur in the family of quadratic twists of E for about

$$
C_{E} x^{3 / 4}(\log x)^{b_{E}}
$$

values of $d<x$ where C_{E} and b_{E} are certain constants:

$$
b_{E}=\left\{\begin{array}{cc}
11 / 8 & \text { if } 3 \text { order } 2 \text { torsion pts } \\
\sqrt{2}-5 / 8 & \text { if } 1 \text { order } 2 \text { torsion pt. } \\
3 / 8 & \text { if } 0 \text { order } 2 \text { torsion pts. }
\end{array}\right.
$$

If we restrict to prime discriminants, then the power on the log should be $-5 / 8$ for any curve.

How are elliptic curves of rank 2 from the family of twists of a fixed E, distributed in arithmetic progressions?

Fix a prime q; consider

$$
R_{q}(X)=\frac{\sum 1}{\sum|d|<X, w_{E} \chi_{d}(-Q)=1} \begin{gathered}
L_{E}\left(1, \chi_{d}\right)=0 \\
\chi_{d}(q)=1 \\
\sum|d|<X, w_{E} \chi_{d}(-Q)=11 \\
L_{E}\left(1, \chi_{d}\right)=0 \\
\chi_{d}(q)=-1
\end{gathered}
$$

Conjecture: (C, Keating, Rubinstein, Snaith; 2000)

$$
\lim _{X \rightarrow \infty} R_{q}(X)=R_{q}:=\left(\frac{q+1-a_{q}}{q+1+a_{q}}\right)^{1 / 2}
$$

| p | conjectured
 R_{p} for E_{11} | data
 for E_{11} | conjectured
 R_{p} for E_{19} | data
 for E_{19} | conjectured
 R_{p} for E_{32} | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | 1 | data |
| for E_{32} | | | | | | |

Higher "ranks" in the family of quadratic twists of a weight 4 or 6 modular forms

For a weight 4 form f we expect that $C_{f} x^{1 / 4}(\log x)^{b_{f}}$ quadratic twists $d<x$ will vanish at the central point.

For a weight ≥ 6 form f we expect that only a bounded number of quadratic twists $d<x$ will vanish at the central point.

3	1.18	1.11
5,	0.55	0.59
11,	1.06	1.15
13,	0.86	0.84
17,	0.84	0.76
19,	1.35	1.53
23,	0.92	0.87
29,	1.14	1.22
31,	0.99	1.05
37,	1.19	1.17
41,	0.90	0.82
43,	0.93	0.90
47,	0.87	0.76
53,	1.06	1.06
59,	0.79	0.75
$61,1.14$	1.15	
67,	0.95	0.94
$71,1.16$	1.17	
$73,1.14$	1.08	
79,	0.93	0.93
83,	1.21	1.18
89,	0.91	0.87
97,	0.97	0.98

> Vanishings of twists of the level 7 weight 4 cusp form.
> There are 1155 vanishings out of 13298378 twists up to $d=100,000,000$

The first column is the prime, the second is the random matrix prediction; the last is the data.

The RMT prediction is

$$
\sqrt{\frac{p^{2}+p+a_{p}}{p^{2}+p-a_{p}}}
$$

Twists of a weight 2 form by a cubic Dirichlet character Work of David, Fearnley, and Kivilevsky (2004).

They obtain $\gg x^{1 / 2-\epsilon}$ vanishing twists for conductors $<x$. RMT predicts the number will be $\sim C_{E} x^{1 / 2}(\log x)^{b_{E}}$

For twists by characters of order 5 they expect the number of vanishings goes to ∞ slowly.

For twists by characters of order 7 and greater they expect a bounded number will vanish.

The RMT model involves a unitary model.

Suggestion for the frequency of rank 3 vanishing

$\#\left\{d \leq X: L_{E}\left(s, \chi_{d}\right)\right.$ has a triple zero $\} \gg x^{3 / 4-\epsilon}$
Might be plausible based on Elkies data for rank 3 curves among twists of the congruent number curve. RMT suggests

$$
\left.\begin{array}{rl}
\lim _{X \rightarrow \infty} \frac{\#\left\{d \leq X: L_{E}\left(s, \chi_{d}\right) \text { has a triple zero, } d \equiv \text { square } \bmod p\right\}}{\#\left\{d \leq X: L_{E}\left(s, \chi_{d}\right) \text { has a triple zero, } d \equiv \text { non-square } \bmod p\right\}} \\
=\left(\frac{p+1-a_{p}}{p+1+a_{p}}\right)^{-3 / 2}
\end{array}\right\} \begin{aligned}
\eta(4 z)^{2} \eta(8 z)^{2}= & q-2 q^{5}-3 q^{9}+6 q^{13}+2 q^{17}+ \\
& -q^{5}-10 q^{29}-2 q^{37}+10 q^{41}+\ldots
\end{aligned}
$$

$\left.\begin{array}{llllll}\text { Elkies data about rank } & 5 & 4240 & 1951 & 2.17324 & 2.82843 \\ 3 \text { twists of the } & 7 & 3281 & 3276 & 1.00153 & 1 \\ \text { congruent number } & 11 & 3698 & 3731 & 0.991155 & 1 \\ \text { curve, sorted by } & 13 & 1827 & 5580 & 0.327419 & 0.252982 \\ \text { Watkins } & 17 & 3186 & 4197 & 0.759114 & 0.715542 \\ & 19 & 3943 & 3998 & 0.986243 & 1 \\ \text { The first column is the prime. } & 23 & 3899 & 3947 & 0.987839 & 1 \\ \text { The second column is the number } & 29 & 5873 & 2249 & 2.61138 & 2.82843 \\ \text { of rank 3's in square residue } & 31 & 4032 & 4083 & 0.987509 & 1 \\ \text { classes. } & 41 & 4451 & 3820 & 1.16518 & 1.17121 \\ \text { The third column is the number of } & 43 & 4202 & 4165 & 1.00888 & 1 \\ \text { rank 3's in non-square classes. } & 53 & 2672 & 5723 & 0.466888 & 0.451156 \\ \text { The fourth column is the ratio of } & 61 & 4266 & 4240 & 1.00613 & 1 \\ \text { columns two and three. } & 67 & 4239 & 3245 & 1.61448 & 1.62927 \\ \text { The last column is the RMT } & 71 & 4166 & 4306 & 0.981421 & 1 \\ \text { prediction. } & 73 & 4696 & 3688 & 0.971322 & 1.27332\end{array}\right] 1.27606$

Let $E_{a, b}$ denote the elliptic curve $y^{2}=x^{3}+a x+b$.
Define a family by
$\mathcal{F}^{\prime}(X):=\left\{E_{a, b^{2}}:|a| \leq X^{1 / 3},|b| \leq X^{1 / 4}, p^{4} \mid a \rightarrow p^{3} \nmid b\right\}$
Matt Young's conjecture (2010): If $|\Re \alpha|<1 / 6$ then

$$
\sum_{E \in \mathcal{F}^{\prime}(X)} L(1 / 2+\alpha, E)=\frac{A(\alpha)}{\zeta(1+\alpha)}\left(1+O\left(N_{E}^{-\delta}\right)\right.
$$

Matt Young

Extreme Values

Conjecture: Farmer, Gonek, Hughes (2006)

$$
\max _{t \in[0, T]}|\zeta(1 / 2+i t)|=\exp \left((1+o(1)) \sqrt{\frac{1}{2} \log T \log \log T}\right)
$$

What RMT won't do

Constants that involve primes

Main terms of size $x^{\wedge}\{1$-ldelta $\}$

Shifted convolution problems

What number theory hasn't done

First moment of zeta

Complete main terms for real moments

RH
>From: Enrico Bombieri eb@IAS.EDU
Date: Tue, 1 Apr 1997 12:35:12 -0500
TO: eb@IAS.EDU, zeilberg@euclid.math.temple.edu

Dear Doron,

There are fantastic developments to Alain Connes's lecture at IAS last Wednesday. Connes gave an account of how to obtain a trace formula involving zeroes of L-functions only on the critical line, and the hope was that one could obtain also Weil's explicit formula in the same context; this would solve the Riemann hypothesis for all L-functions at one stroke. Thus ther cannot be even a single zeroe(1) off the critical line!

Well, a young physicist at the lecture saw in a flash that one could set the whole thing in a combinatorial setteng using ouperaymmetric formionic-booonic ayotomo (the phyoice corresponds to a near absolute zero ensemble of a mixture of anyons and morons with opposite spins) and, using the C-based meta-language MISPAR, after six days of uninterrupted work, computed the logdet of the resolvent Laplacian, removed the infinities using renormalization, and, lo and behold, he got the required positivity of Weil's explicit formula! Wow!

Regards also from Paula Cohen. Please give this the highest diffusion. Best,

The End

