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More recent material on Riemann:

Der Briefwechsel Richard Dedekind Heinrich Weber 
Korrespondenz, Edd. Katrin Scheel, Thomas Sonar, 
Karin Reich

Riemann Nachlass in Berlin, Erwin Neuenschwander
Norbert Schappacher

Letters from Riemann to W. Weber, Jose Marin,
 Wolfgang Gabcke

Notes of Ernst Meissel, found by Jan Peetre



  

One or two things to bear in mind about Riemann:

He  spent most of his working life in Göttingen, but the  two 
years he spent in Berlin were the most influential.   He was really 
a student of Dirichlet and strongly influenced by the less 
convivial Jacobi.   

In Göttingen the most creative teachers/colleagues were 
physisics, Wilhelm Weber and Johann Benedikt Listing.   Gauss 
was too old to have any direct influence.   Dedekind was a fellow 
student who befriended Riemann and helped him through his 
dark phases.  Riemann seems never to have been really happy in 
Göttingen, but he seems to have been in Berlin and later in Italy.   
  



  

Further – Riemann was a most voracious and retentive reader.
From Dirichlet he was probably introduced to the French 
literature – most famously Cauchy.   In Göttingen, because of 
the (by this point historical, after the accession of Victoria) 
Hanoverian court in the UK there was an excellent collection 
of British journals in the university library.   They are still there 
and there is good evidence the Riemann read them.  

We shall have reason to think about Fourier's masterpiece 
”Théorie de chaleur“, Binet's memoir on the gamma function,  
and Stokes' great memoir on the Airy integral and Bessel 
functions. 



  

Riemann's method of working seems to have had three 
distinct phases:

Wide reading around the topic in question

Thinking long and hard with only minimal use of paper, 
and that mainly for technical calculations

Writing directly out of his head.  

The final phase caused him considerable difficulty – even as a 
schoolboy he worked in this way and got into trouble for it.   It 
is perhaps not surprising that he did make some mistakes – 
but mistakes at a very high level. 



  

Having got all this off my chest I come to what are the main 
contentions of this talk:

1.  Riemann was thinking in the context of summation 
formulæ  - as in his Habil-Schrift – and this was only one part 
of a bigger project.

2.  He was using very strongly an analogy with Bessel 
functions – but he pushed this rather too far.

3.  He was convinced in 1859 that the Riemann Hypothesis but 
by 1863 he was no longer certain.

The first of these really needs little discussion.   The second is 
the one on which I shall concentrate.   



  

But first we consider the last of these.   The point in his paper 
where he enunciates the Riemann Hypothesis is very well 
known but somewhat later, in discussing the distribution of 
the primes, he assumes without further ado that the zeros of ξ 
are real.   

However when Schering and others published Volume 2 of 
Gauss' Collected Papers they included the letter from Gauss to 
Encke on the prime numbers and there is no reference to 
Riemann's investigation.   It was published by the Akademie 
der Wissenschaften in Göttingen; Riemann was a member and 
had close contacts to the editors. 



  

Now we turn to the main contention.   Riemann gives two 
proofs of the analytic continuation.   The first is based on a 
contour integral which he writes as 

2 sin π sΠ(s−1)ζ(s )=i∫
∞

∞ xs−1

ex−1
dx.

One can recognise in this a relationship to the theory of 
Bernoulli numbers (and so Bernoulli polynomials) and also 
with the Euler-Maclaurin summation formula.   This is related 
to the kernel Riemann uses in his Habil-Schrift.  The point here 
is that he can show how effective the methods of complex 
analysis and how advantageous a flexible contour is – as in his 
paper on the hypergeometric function. 



  

In the other proof Riemann uses the elementary theta and an 
ingenious but simple integration by parts to show that if 
s=½+ti and we write  

Π(
s
2
)(s−1)π

−s /2
ζ (s)=ξ(t)

then  

ξ (t)=4∫1

∞ d (x3 /2
ψ ' ( x))
dx

cos(
1
2
t log x)dx.

Here  ψ(x)=(θ(x)-1)/2 and θ is the usual theta function.   We 
next express the integral as     

∫0

∞

Φ(u)cos( tu)du.



  

The graph of Φ looks like 

This is very, very close to the Poisson integral for a J-Bessel 
function (with an additional factor) in which Φ is replaced by 
a function of the form (1-u2)λ-½.,   supported [0,1] whereas 
Riemann's function does not have compact support.



  

There are two lines of thought that one can follow starting 
from this formula.

Firstly – there is a strong analogy with Bessel functions.   In his 
Théorie de chaleur Fourier proves that the zeros of J0(x) are all 
real.    Both Fourier's motivation and his proof are extremely 
interesting and we shall come back to it.

Secondly – the notes of Ernst Meissel make it clear that one 
can compute both ξ(t) in an interval around 0 and the early 
Taylor coefficients effectively and without too much trouble 
by relatively straightforward numerical techniques.   Meissel's 
rough notes take up only 9  pages although he would have 
done “sums” on a slate or sheet of paper.   He uses the “Polya 
approximation”, the term in Φ coming from the first term in 
the defining sum for θ.



  

Let us write:

ξ (t)=∑ (−1)n
an

(2n )!
t 2n .

The an are then given by

an=∫0

∞

Φ(u)u2n du .

Riemann writes, shortly before he enunciates the Riemann 
Hypothesis that this is a very rapidly converging series.  He 
neither gives a justification for this nor does he make it 
particularly clear what he means.   The asymptotics of an were 
only resolved in 1964 (with a correction in 1966) by Emil 
Grosswald.   It is not easy.



  

It turns out that for small n that an is very small – Wolfgang 
Gabcke gave me a list of values for 2n≤1000  - but the values 
start increasing  very rapidly.   Here are the values   (log10 
thereof) plotted against 2n.



  

The corresponding plot for J0 is:

Although there is a lot of wriggle room in the interpretations it 
would seem as if Riemann was working from analogies and a 
few computations.    There is no evidence that he had 
developed any theory of the asymptotics of an.



  

We now turn to Riemann's general strategy.   He had been 
thinking about summation formulæ in his Habil-Schrift.  The 
analysis of such formulæ is generally by means of kernel 
functions which are special cases of the general formula.   One 
which can be used to prove versions of Fourier's theorem was 
the formula: 

π cot(π x)=
1
x
+∑n⩾1

1
x−n

+
1
x+n

.

This is logarithmic derivative of Euler's formula:   

sin(π x)=π x∏ (1−x2
/n2

).

The zeta function is not far away.



  

Fourier series are not the only “eigenfunction expansions” 
which Fourier considers in his Théorie de chaleur.  He also 
studies Fourier-Bessel expansions, i.e. the  expansions of 
functions on [0,1], vanishing at 1 and zero derivative at 0 in 
series of the functions   J0(jn x) where jn runs through the 
positive zeros of J0.    

These first appear in works of Daniel Bernoulli (1738) on 
swinging chains and of Leonard Euler (1764) on circular 
drums.   In these works, which we cannot go into now, the 
zeros of J0 appear as the frequencies of vibration.

Fourier  encountered them as well in studying the heat 
equation and later Riemann was to as well in his paper on 
Nobili rings (electric conduction).  



  

Fourier proves the remarkable theorem that 
all the zeros of J0 are real.  

This  is presumably the godmother of the Riemann 
Hypothesis.

He proves it by constructing an excellent rational 
approximations to J0  and then using “Fourier's criterion”, a 
prototype of Sturm's criterion which Charles Sturm proved a 
few years later.

The proof which we would now give (self-adjointness) was 
first given by Riemann in his lectures  (WS 1854/55,WS 
1860/61, SS 1862), and by Eugen v. Lommel (1868). 



  

Why was this important?   The zeros were, as reported above, 
were important in the applications.   If one tries to tabulate a 
function like J0 by using the series one very rapidly gets to the 
point where on is “subtracting infinity from infinity”; the 
calculations become unstable.   In a paper De oscillationibus 
minimis funis libere suspendi published in 1781, i.e. close to the 
end of his life gave a most ingenious method for computing 
the zeros.   Recall the formula  

sin(π x)=π x∏ (1−x2
/n2

).

Euler's original “proof” was formal – and bogus – but he later 
gave a valid proof using the addition formula.   One can also 
use the differential equation, for example, for cot(πx).   Euler, 
on the principle that what's good for the goose is good for the 
gander, applied his formal argument again to J0.



  

Euler then posited:

J 0(x)=∏n⩾1
(1− x2

/ jn
2
).

Let sk=∑n⩾1
j n
−2k ;

One then has 

J 0 ' (x)

J 0( x)
=−2∑k⩾1

sk x
2k−1 .

The coefficients of the Bessel function are rational numbers 
and so it is easy to write down a recursion to compute the sk.



  

If we order the jn by size then we have that  

j 1
2
=lim k →∞ sk−1/sk .

This comes with error estimates.   Once one has computed this 
term to a given degree of accuracy one can remove it from the 
sums sk and repeat the process with the remaining zeros.   This 
method was invented in the case of polynomials by Daniel 
Bernoulli.   Euler obtained very good results using it.

The method can be pepped up in various ways, most 
especially by a method of Gräffe (introduced in 1833 for 
polynomials).   For those interested it is described in Perron's 
Algebra, Bd.2.



  

Why was he successful? 
Because of the reality of the zeros.   Euler assumed this and it 
explains the significance of Fourier's theorem.

Now we can return to Riemann, or, at least, the zeta function.
It would be, in principle, possible to compute numerically, for 
some values of k, the series      

∑ρ
(ρ−1/2)

−2k .



  

The computations are more intricate; there is no evidence that 
either Riemann or his immediate successors attempted it.   
Had they done so, it would, in principle, have been possible to 
compare these values with the corresponding sum over the 
real zeros.   One could imagine a justification of Riemann's “so 
many of” statement along these lines.   However, one has the 
formula

If one computes this the convergence is painfully slow and if 
anything it would be a strain on the belief of the most faithful.  

∑
ℑ(ρ)>0

1
ρ(1−ρ)

=
1
2

log (4π)−1−γ/2.



  

Euler's method gets less and less accurate the higher the zero.  
This problem was first really solved by Stokes in a paper 
variously dated 1847(MVB), 1850(GGS) and 1856(GNW).   

Stokes was primarily concerned with the Airy function but 
considered other Bessel functions – in this paper he proves 
that the Airy function is essentially a Bessel function of order 
⅓, a result usually ascribed to Nicholson (1909) and Wirtinger 
(1897).   

Stokes first uses an argument close to Cauchy's theorem, but 
done by hand, to convert Airy's improper integral into a 
convergent integral and derives from this both the series 
expansion and the differential equation.



  

He then compares the differential equation with ones whose 
solutions he knows and which he suspects gives the 
asymptotics and uses a geometric comparison, the sort of 
method more often used for non-linear equations, to give the 
asymptotics for both the functions and for the zeros.   He also 
makes use of the method of stationary phase, usually ascribed 
to Kelvin (1887) – but Lamb does point out, in his 
Hydrodynamics, the relevance of Stokes' paper. 

Stokes was influenced by Hamilton's On fluctuating functions 
(1844), an analysis of Dirichlet's proof of the representability of 
functions of bounded variation by their Fourier series.   In it, 
and another paper of Stokes, there are early versions of the 
Riemann-Lebesgue Lemmas.    



  

Stokes's paper is very much in the same spirit as Riemann's 
work.   The paper was available in Göttingen and we know the 
Riemann did read other papers of Stokes.    Moreover he 
seems to quote from Stokes' paper in his paper on Nobili 
rings.   

One could imagine then the Riemann would have aimed at a 
similar result for the zeta function.   There is a brief note which 
Siegel converted into the Riemann-Siegel formula.   In his 
proof  he uses Riemann's first representation of the zeta 
function.   It is a very sophisticated argument and it seems 
unlikely that Riemann had got this far.   Unfortunately there is 
simply no evidence.    



  

Riemann's approach to N(T) is unknown.   Strictly speaking 
the formula he gave is incorrect.   It is often interpreted as a 
misprint for v. Mangoldt's theorem but there is no evidence at 
all that Riemann had made any attempts to estimate arg ζ(s) 
where one would need it.  

Also the verification of the Riemann Hypothesis relies on the 
effective version of v. Mangoldt's theorem which dates from 
1911 or 1912 and more thoroughly later – by Backlund.   
Before that there were no verifications.



  

In this talk I have concentrated on the significance of 
Riemann's second representation of the zeta function and the 
analogy with Bessel functions.   I should remind you – and it is 
referred to in Titchmarsh – the Pólya did use this 
representation in his paper Über die algebraisch-
funktionentheoretischen Untersuchungen von J.L.W.V. Jensen, 
(1927), 34 pp.  to deduce Hardy's theorem on the infinitude of 
zeros on the critical line – see pp .  28-31.   This does seem to 
be a bit more sophisticated than one would expect from 
someone working it is possible that something along these 
lines, perhaps incomplete or heuristic, was what Riemann had 
in mind.        



  

This work of Pólya's is ist one of several interesting and subtle 
papers which he wrote in the 1920s, and which are still 
relevant today.   The phrase “Hilbert-Pólya Conjecture”, which 
is not even a conjecture but a pious hope, undervalues the real 
achievements of Pólya.   The “contribution” of Hilbert is 
anecdotal – the most authentic-looking version is given by 
Weil in his Collected Works where is is a gung-ho statement 
made in a lecture.   Hilbert was rather given to bursts of wild 
enthusiasm.   As we have seen the idea of exploiting self-
adjointedness probably goes back to Riemann himself.



  

If some sort of self-adjointness argument were to be posited it 
would only be meaningful if the differential operator were to 
be stipulated.    A “random” i.e. “typical” operator would be 
the result of some existence theorem and would probably rely 
on the Riemann Hypothesis.  Experiments can be done.   One 
can look for a 1-dimensional Schrödinger operator.   This has 
been done by Christa Mirgel – Diplomarbeit, Göttingen, 1985.   
The results do not suggest that there is some very special 
potential, but that by a judicious choice of paramenters one 
can get close to a group of zeros.

And – one should not forget that this is not the only game as 
Stepanov showed in connection with the Riemann Hypothesis 
for curves.   Noteworthy is that Keith Ball has recently taken 
up the path trodden by Fourier and Pólya.          



  

One final point – the Riemann Hypothesis, however one might 
understand it – has become one of the “sexiest” ( a better 
nomenclature would be C.G.Jung's “numinous”)  questions if 
one judges by its exposure in the media and the number of 
non-proofs which appear day for day.   It certainly has been 
very influential as a  guide and has engendered a great deal of 
valuable mathematics over the last hundred years or so, 
perhaps from Hadamard and de la Vallée Poussin on, as work-
arounds.  But the historian has the same question as that 
which Max Weber confronted with his concept of “charisma” 
in leaders.   

Why?                 Is it really justified?    


