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Dictionary

L-functions ↔ “Sieves”

log |ζ( 1
2 + it)| w(n) =

∑
p|n

1

|ζ( 1
2 + it)|2 d(n) =

∑
d|n

1 ≈ 2ω(n)

|ζ(σ + it)|2 σ1−2σ(n) =
∑
d|n

d1−2σ

L( 1
2 , f ⊗ χ−n) |λf (n)|2



First analogies

1. The first analogy appears in work of Selberg on the proportion of
zeros of ζ(s) on the half-line.

2. Consider,

Z (t) := e−iθ(t)ζ( 1
2 + it) ∈ R , e2iθ(t) :=

Γ(
1
2−it

2 )

Γ(
1
2 +it

2 )

Counting sign changes of Z (t) corresponds to counting zeros of ζ(s)
on the half-line.

3. Hardy-Littlewood: Produce sign changes by finding disjoint intervals
I1, I2, . . . , IR with, ∣∣∣ ∫

Ij

Z (u)du
∣∣∣ < ∫

Ij

|Z (u)|du.



First analogies

1. Up to height T there are � T log T zeros, so to obtain a positive
proportion we would need to find ≈ T log T disjoint intervals
I1, . . . , IR each of length ≈ (log T )−1 on which (??) holds.

2. Unfortunately Z (t) fluctuates quite wildly and is most of the times
either small or large, so the mean-value of Z (t) over an interval of
length (log t)−1 is dominated by the peak of Z (t), making the event∣∣∣ ∫

I

Z (u)du
∣∣∣ < ∫

I

|Z (u)|du (1)

hard to detect analytically if |I | � (log T )−1.

3. One needs to choose I longer so that at least several peaks occur
and their signs cancel out. For this reason Hardy-Littlewood were
only able to produce � T zeros up to height T by taking each
interval I of length about 1.



First analogies
1. To obtain a positive proportion of sign changes on the half-line one

needs to find a way to dampen the size of Z (t) so to diminish the
importance of peaks, and allow for more sign cancellations.

2. For this purpose Selberg introduces a mollifier,

M(s) :=
∑
n≤z

d1/2(n)µ(n)

ns
·
(

1− log n

log z

)
.

3. This has the property that |Z (t)M( 1
2 + it)2| ≈ 1 for most t if z > tε.

4. Furthermore if z is not too large then,∫ 2T

T

|Z (t)M( 1
2 + it)2|2dt �

∫ 2T

T

|Z (t)M( 1
2 + it)2|4dt � T .

are computable.
5. This allows one to conclude that there are � T log T disjoint

intervals I1, . . . , IR with∣∣∣ ∫
Ij

Z (u)|M( 1
2 + iu)|2du

∣∣∣ < ∫
Ij

|Z (u)| · |M( 1
2 + iu)|2du

and this gives � T log T sign changes of Z (t) hence also that many
zeros on the critical line.



First analogies

1. The proportion was subsequently improved to 1
3 by Levinson using

some highly non-trivial function theoretic methods

2. The next improvement to 36% is due to Conrey who appealed
among other to Weil’s bounds for Kloosterman sums, and thus to
the Riemann Hypothesis for Curves.

3. The further improvement to 40% is also due to Conrey, using the
spectral theory of the hyperbolic Laplacian (through work of
Deshouillers-Iwaniec), Vaughan’s identity for the Moebius function,
and using an improvement of Levinson’s method. This is in my
opinion one of the strongest results towards RH to date.

4. There have been further very technical improvements, using various
innovative mollifiers, in particular in work of Bui. There are too
many people who made small incremental improvements here, so
unfortunately I cannot quote them all (Robles, Zaharescu, Pratt,
Zeindler, ...)



First analogies
1. Soon after his work on zeros of ζ(s), proceeding by analogy Selberg

developed the Selberg sieve. The idea is that for any n > z and any
coefficients λd with λ1 = 1,

1n is prime ≤
(∑

d|n
d≤z

λd

)2

The usefulness of this inequality that the analytic complexity of the
RHS is low, where-as the analytic complexity of the LHS is high.

2. Thus it remains to find λd that will minimize the above inequality in
an appropriate average sense. For instance, find λd that minimize,∑

n≤x

(∑
d|n
d≤z

λd

)2

3. This is very similar to the problem of finding λd that minimze,∫ 2T

T

∣∣∣ζ( 1
2 + it)

∑
d≤z

λd

d
1
2 +it

∣∣∣2dt.

4. In both cases the optimal choice is λd = µ(d) ·
(

1− log d
log z

)
.



First analogies

The Selberg sieve in its multidimensional incarnation had striking success
with bounded gaps between primes, in works of Goldston-Pintz-Yildrim,
Maynard, Tao and the Polymath team.



Second analogy
1. In modern work on L-functions the sieve returns in work of

Soundararajan on moments of L-functions.

2. The objective is to obtain conditionally on RH, upper bounds for
moments such as,∫ 2T

T

|ζ( 1
2 + it)|2kdt � T (log T )k

2

.

3. In order to achieve this Soundararajan shows that on RH, uniformly
in 2 ≤ X ≤ T and t ∈ [T , 2T ],

log |ζ( 1
2 + it)| ≤ <

∑
p≤X

1

p
1
2 +it

+
log T

log X

4. The sieve theoretic analogue of this inequality is the elementary
inequality for n ∈ [N, 2N],

w(n) :=
∑
p|n

1 ≤
∑
p|n
p≤y

1 +
log 2N

log y



Second analogy

1. Both inequalities

log |ζ( 1
2 + it)| ≤ <

∑
p≤X

1

p1/2+it
+

log T

log x
, w(n) ≤

∑
p|n
p≤y

1 +
log 2N

log y

achieve the same aim: they allow for distributional control over
log |ζ|, respectively w(n). Again the RHS is of low analytic
complexity where-as the LHS is difficult.

2. This then leads to upper bounds for moments, respectively,∫ 2T

T

|ζ( 1
2 + it)|2kdt ,

∑
n≤x

eαw(n).

3. In the first incarnation one obtains sharp upper bounds for moments
due to Soundararajan, and then refined by Harper, and in the second
case one obtains sharp upper bounds for non-negative multiplicative
functions, originally due to Shiu.



Third analogy

In recent work with Soundararajan we have been able to develop a third
analogy, transporting the pure Brun sieve into the realms of L-functions.
This allows to make progress on various distributional questions of which
I will detail only one.



Third analogy

1. An important problem in the theory of L-functions is to establish
non-vanishing at the central point. There are analytic and algebraic
methods for this.

2. The algebraic methods typically rely on the algebraicity of the
central values. For instance for f an integral weight cusp form, one
uses Waldspurger in the form L( 1

2 , f ⊗ χ−n) � |λg (n)|2 for some
half-integral g , and then one establishes a congruence for λg that
implies λg (n) 6= 0 (i.e Ono-Skinner, ...).

3. Alternatively for E an elliptic curve one could use that for any Galois
automorphism σ we have L( 1

2 ,E ⊗ χ)σ = L( 1
2 ,E ⊗ χ

σ) . Thus
showing L( 1

2 ,E ⊗ χ) 6= 0 for all χ in a given Galois orbit amounts to
showing that there is at least one χ in each Galois orbit for which
L( 1

2 ,E ⊗ χ) 6= 0. If the Galois orbits are large, this can be easily
achieved by considering a first moment of L( 1

2 ,E ⊗ χ) within the
same Galois orbit (i.e Rohrlich, Chinta, ...).



Third analogy

1. The analytic methods for non-vanishing at the central point rely
almost exclusively on the “second moment method” and
mollification.

2. For instance,∑
L( 1

2 , χ−8d) ≤
( ∑

L(
1
2 ,χ−8d ) 6=0

1
)1/2

·
(∑

L( 1
2 , χ−8d)2

)1/2

3. Computing the two moments leads to∑
8d≤X

(d,2)=1
d square-free

L(
1
2 ,χ−8d ) 6=0

1� X

log X
.



Third analogy

1. The inefficiencies are again due to the fluctuation in size of
L( 1

2 , χ−8d) and one can reduce this by introducing a mollifier,

M(χ−8d) :=
∑
n≤z

χ−8d(n)µ(n)√
n

·
(

1− log n

log z

)
.

2. The point of this mollifier is that for most d we have
L( 1

2 , χ−8d)M(χ−8d) � 1.

3. Since,∑
8d≤X

L( 1
2 , χ−8d)M(χ−8d) �

∑
8d≤X

(L( 1
2 , χ−8d)M(χ−8d))2 � X

applying Cauchy-Schwarz leads to a positive proportion of
non-vanishing for L( 1

2 , χ−8d).



Third analogy

1. The algebraic and analytic method are mostly disjoint in their
domain of applicability (one methods works very well when the other
works poorly or not at all, and vice-versa).

2. One consistent advantage of the analytic method is that it not only
produces non-vanshing but also shows that the non-zero values are
not too small.

3. For instance the analytic method for non-vanishing at the central
point not only shows that L( 1

2 , χ) 6= 0 for 3
8 of characters χ (mod q)

(Iwaniec-Sarnak, Khan-Ngo), but also shows that
|L( 1

2 , χ)| � (log q)−10 for 3
8 of characters χ (mod q).



Third analogy

This leads us to the main question:
Can one refine the mollifier method so that it also produces tight
results in terms of the size of L-functions?

Conjecture (Keating-Snaith)
Let F be the set of odd, square-free integers. Then, as x →∞,

1

|F ∩ [1, x ]|
#
{

d ∈ F ∩ [1, x ] :
log |L( 1

2 , χ−8d)|
√

log log d
∈ (α, β)

}
is in the limit equal to ∫ β

α

e−u
2/2 · du√

2π
.

This conjecture is thus our goal.



Third analogy

1. Sound mentioned some of our joint results in the lecture yesterday
and I would like to explain the ideas behind the following result.

Theorem
Let F be the set of odd, square-free integers. Then, for any α < β as
x →∞, the quantity,

1

|F ∩ [1, x ]|
#
{

d ∈ F ∩ [1, x ] :
log |L( 1

2 , χ−8d)|
√

log log d
∈ (α, β)

}
is at least

>
(7

8
+ o(1)

)∫ β

α

e−u
2/2 · du√

2π
.



Third analogy

1. Our result is based on the introduction of a new mollifier based on
the pure Brun sieve. So let us first explain what is the Brun and the
pure Brun sieve.

2. The Brun sieve is a consequence of Bonferoni’s inequality,
accordingly it gives for n ∈ [X , 2X ],

1n is prime ≤
∑
d|n

p|d =⇒ p≤Y1

Ω(d)≤W1

µ(d). (2)

where W1 is even.

3. It is important that the “analytic complexity” of the RHS remains
low. To achieve this we need to choose Y1 and W1 so that
Y W1

1 ≤ X .

4. Moreover for the sieve to be any good it needs to sift typical divisors.
Thus we need Ω(d) > log log d and therefore W1 > log log X .

5. So one is limited in the choice of Y1 to Y1 ≤ exp(log X/ log log X ).
We choose for instance Y1 = exp(log X/(log log X )2).



Third analogy
1. Unfortunately if one averages the resulting sieve,

1n is prime ≤
∑
d|n

p|d =⇒ p≤Y1

Ω(d)≤W1

µ(d)

then we obtain an upper bound for the number of primes ≤ X that
is off by log log X , i.e

� X log log X

log X

2. To correct this defect one can multiply the Brun sieve, by another
Brun sieve that corrects the defects on the larger primes. One is
faced with similar limitations as before, so we choose our second
piece to be

h2(n) :=
∑
d|n

p|d =⇒ Y1≤p≤Y2

Ω(d)≤W2

µ(d)

where W2 is even and the parameters choosen so that Y W2
2 ≤ X and

we need also that W2 > log log log X . Therefore
Y2 = exp(log X/(log log log X )2) is a reasonable choice.



Third analogy

1. Thus consider,
1n is prime ≤ h1(n)h2(n)

where
hi (n) :=

∑
d|n

Yi−1≤p≤Yi

Ω(d)≤Wi

µ(d)

with parameters choosen as before.

2. Averaging this establishes a bound for the number of primes which is
now off by log log log X . So we are doing better.

3. The optimal sieve is then constructed by iterating and writting,

1n is prime ≤ h1(n)h2(n) · · · hR(n)

for some R going to infinity very slowly.



Third analogy

1. We introduce a mollifier based on the pure Brun sieve. The main
point is that we would like to construct a mollifier that provably
behaves like the inverse of an Euler product.

2. Let Y0 = 1 , Y1 = X 1/(log log X )2

, Y2 = X 1/(log log log X )2

, ...

3. Consider for each i ,

Mi (s) :=
∑

p|n =⇒ Yi−1≤p≤Yi

Ω(n)≤10
√

log X
log Yi

µ(n)

ns
, Qi (s) :=

∑
Yi−1≤p≤Yi

p−s .

Then, whenever |Qi (
1
2 + it)| ≤ 10

√
log X
log Yi

we have by a Taylor

expansion,
Mi (s) ≈ e−Qi (s).

4. Importantly |Qi | ≤ 10
√

log X
log Yi

is a typical event.

5. Our Brun sieve mollifier is M(s) := M1(s)M2(s) . . . ...MR(s) where

R is choosen so that the total length of M(s) is in [X ε10

,X ε]



Third analogy
1. Our strategy is as follows : Using the fact that M is a mollifier, we

show that for 7
8 + O(ε) of quadratic characters we have,

ε < |L( 1
2 , χ−8d)M(χ−8d)| ≤ 1

ε

for any fixed ε > 0.

2. However for almost all χ−8d with d ∈ [X , 2X ] we also have by
construction

M(χ−8d) ≈ e−Q1(χ−8d )−Q2(χ−8d )+O(log log log X )

3. So it follows that for 7
8 of characters χ−8d with d ∈ [X , 2X ], we also

have,

log |L( 1
2 , χ−8d)| ≈

∑
p≤X 1/(log log X )2

χ−8d(p)
√

p
+ O(log log log X ).

It thus remains to run through this argument by also imposing the
condition that the sum over primes (i.e Q1 +Q2) behave in an
appropriate Gaussian way. This can be achieved with moments.



Third analogy
Rigorously the argument runs as follows.

1. Consider the first moment,∑
(Q1+Q2)(χ−8d )− 1

2
log log d

√
log log d

∈(α,β)

L( 1
2 , χ−8d)M(χ−8d)

2. Notice that “for free” at any time, we can add the condition that
Q1,Q2 are not too large, and that ε < |L( 1

2 , χ−8d)M(χ−8d)| ≤ 1
ε .

3. The condition that

(Q1 +Q2)(χ−8d)− 1
2 log log d

√
log log d

∈ (α, β)

can be controlled through moments, by considering,∑
L( 1

2 , χ−8d)M(χ−8d)
( (Q1 +Q2)(χ−8d)− 1

2 log log d
√

log log d

)2k

4. Notice that Q1,Q2 is supported on small primes, where-as
L(χ−8d)M(χ−8d) is supported on large primes. So we expect
independence.



Third analogy

1. In any case we expect that the first moment∑
(Q1+Q2)(χ−8d )− 1

2
log log d

√
log log d

∈(α,β)

L( 1
2 , χ−8d)M(χ−8d)

≈
∫ β

α

e−u
2/2 · du√

2π

∑
L( 1

2 , χ−8d)M(χ−8d)

2. And a similar computation also works for the second moment.

3. Finally recall that we can always add for free in the first moment,
the conditions that,

ε < |L( 1
2 , χ−8d)M(χ−8d)| ≤ 1

ε

and that |Q1|, |Q2| are not large so that, also

M(χ−8d) ≈ e−Q1(χ−8d )−Q2(χ−8d )+O(log log log X ).



Third analogy

1. Therefore applying Cauchy-Schwarz we end up with,∫ β

α

e−u
2/2 · du√

2π

∑
L( 1

2 , χ−8d)M(χ−8d)

≤
( ∑

(Q1+Q2)(χ−8d )− 1
2

log log d
√

log log d
∈(α,β)

ε<|L(
1
2 ,χ−8d )M(χ−8d )|≤ 1

ε

M(χ−8d )≈e−(Q1+Q2)(χ−8d )

1
)1/2

×
(∫ β

α

e−u
2/2 · du√

2π

∑
(L( 1

2 , χ−8d)M(χ−8d))2
)1/2

2. Upon dividing this gives the desidered LHS. On the other hand we
can re-arrange the RHS into an lower bound for exactly what we
want, that is

#
{

d ∈ F ∩ [1, x ] :
log |L( 1

2 , χ−8d)| − 1
2 log log d

√
log log d

∈ (α, β)
}



Third analogy

Consequently one gets the corollary that not only 7
8 of the χ−8d are such

that L( 1
2 , χ−8d) 6= 0 but in fact 7

8 of the χ−8d are such that,

L( 1
2 , χ−8d) � (log d)

1
2 +o(1).

In some sense it is no surprise that we get a good proportion of
non-vanishing in the case of L( 1

2 , χ−8d) because these values are typically
large, so one would expect it should be easier to show that they are
non-zero!!
The proof on RH is rather similar but easier using the explicit formula
and conditioning it.



Third analogy

The final technical remark is that our actual mollifier is a hybrid Brun
pure sieve / Selberg mollifier, and takes the shape of

M(s) = M0(s)
∑

p|n =⇒ p>Xε

n<
√
X

µ(n)wnχ−8d(n)√
n

where M0 is the Brun pure sieve mollifier supported on n ≤ X ε and the
weights wn are the weights of the optimal Selberg mollifier that
minimizes the ratio of∑

(L( 1
2 , χ−8d)

∑
µ(n)wnχ−8d(n)n−1/2)2∑

L( 1
2 , χ−8d)

∑
µ(n)wnχ−8d(n)n−1/2



A final nice analogy

A final nice analogy that I didn’t have the opportunity to mention is the
following approximate functional equation,

ζ(σ+ it) =
∑

n≤
√

t/2π

1

nσ+it
+χ(σ+ it)

∑
n≤
√

t/2π

1

n1−σ−it , χ(s) =
Γ(1− s)

Γ(s)

“Sieve” version:

σ1−2σ(n) =
∑
`

c`(n)

n2σ
f1−2σ

( `√
n

)
+ n1−2σ

∑
`

c`(n)

n2−2σ
f2σ−1

( `√
n

)
where fσ(x) are some smooth functions concentrated in x � 1 and c`(n)
are Ramanujan sums.


	Dictionary
	Dictionary
	Dictionary
	Selberg's theorem
	Subsection no.1.1 

	Section no. 2
	Lists I
	Lists II

	Section no.3
	Tables

	Section no. 4
	blocs


