Hypergeometric Motives

Fernando Rodriguez Villegas

ICTP
June 2018

Collaborators

H. Cohen, Ph. Candelas, S. Baig, F. Beukers, X. de la Ossa, A. Mellit, P. Molin, D. Roberts, M. Vashenko, M. Watkins

Motivic L-functions

$$
\Lambda(s)=N^{s / 2} L_{\infty}(s) \prod_{p} L_{p}\left(p^{-s}\right)^{-1}, \quad \Re(s)>\sigma_{0}
$$

- Conductor: N, positive integer
- Euler factors: $L_{p}(T)$, polynomials in $Z[T]$
- Degree: d, degree of L_{p} (generically)
- Weight: w, an integer

$$
L_{p}(T)=\prod_{i=1}^{d}\left(1-\xi_{i} T\right), \quad\left|\xi_{i}\right|=p^{w / 2}, \quad p \nmid N
$$

- Infinity factor: $L_{\infty}(s)$, product of gamma factors
- Functional equation: (expected)

$$
\Lambda(w+1-s)=\epsilon \Lambda(s), \quad \epsilon= \pm 1
$$

Hodge numbers

- Refinement of the rank, determines $L_{\infty}(s)$.

$$
\begin{array}{ll}
h^{p, q} \in \mathbb{Z}_{\geq 0}, & p+q=w \\
h^{p, q}=h^{q, p}, & \sum_{p, q} h^{p, q}=d
\end{array}
$$

- Hodge vector (up to Tate twists $w \mapsto w \pm 2 r$)

$$
\begin{gathered}
\mathbf{h}:=\left(h^{w, 0}, h^{w-1,1}, \ldots, h^{0, w}\right), \quad h^{w, 0} \neq 0 \\
h^{p, p}=h_{+}^{p, p}+h_{-}^{p, p}
\end{gathered}
$$

Gamma factors

- (Serre)

$$
L_{\infty}(s)=\prod_{p} \Gamma_{\mathbb{R}}(s-p)^{h_{+}^{p, p}} \Gamma_{\mathbb{R}}(s-p+1)^{h_{-}^{p, p}} \prod_{p<q} \Gamma_{\mathbb{C}}(s-p)^{h^{p, q}}
$$

$$
\Gamma_{\mathbb{R}}(s):=(2 \pi)^{-s / 2} \Gamma(s / 2), \quad \Gamma_{\mathbb{C}}(s):=(2 \pi)^{-s} \Gamma(s)
$$

Question

How are Hodge vectors distributed among all motives?

Source of L-functions

- Automorphic Forms.
- Cohomology of algebraic varieties.
- Typically appear as a piece of a bigger object cut out by endomorphisms.

Automorphic Forms

- Hard to deal with $h^{p, q}>1$.
- Usual modular forms

k	\mathbf{h}
1	(2)
2	$(1,1)$
3	$(1,0,1)$
4	$(1,0,0,1)$

- Hard to compute L_{p} in general.

Algebraic Varieties

- Griffiths transversality \rightarrow no gaps in \mathbf{h}.
- Example: quintic threefold

$$
\begin{gathered}
X: F\left(x_{1}, \ldots, x_{5}\right)=0 \\
H:=H^{3}(X, \mathbb{Q}), \quad d=\operatorname{dim} H=204, \quad w=3
\end{gathered}
$$

- Dwork pencil

$$
X_{\psi}: x_{1}^{5}+\cdots x_{5}^{5}-5 \psi x_{1} \cdots x_{5}=0
$$

$$
A \subseteq \operatorname{Aut}\left(X_{\psi}\right), \quad x_{i} \mapsto \zeta_{i} x_{i}, \quad \zeta_{1}^{5}=\cdots=\zeta_{5}^{5}=\zeta_{1} \cdots \zeta_{5}=1
$$

$$
V:=H^{A}, \quad d=\operatorname{dim} V=4, \quad \mathbf{h}=(1,1,1,1), \quad w=3
$$

Hypergeometric Motives

- $q_{0}, q_{\infty} \in \mathbb{Z}[T]$, coprime, same degree d, roots are roots of unity.
- Get associated family of motives $\mathcal{H}(t)$ with $t \in \mathbb{P}^{1} \backslash\{0,1, \infty\}$.
- $\mathcal{H}(t)$ has rank d and a computable weight w in terms of q_{0}, q_{∞}.
- More precisely, can compute Hodge numbers hence $L_{\infty}(s)$
- For fixed $t \in \mathbb{Q}$: formula for $L_{p}(T)$ for $p \notin S$
- Katz's hypergeometric trace

Examples

- Belyi polynomials $c:=a+b$

$$
\begin{gathered}
\mathbb{Q}[x] /(B(a, b ; t)), \quad B(a, b ; t):=x^{a}(1-x)^{b}-\frac{a^{a} b^{b}}{c^{c}} t \\
\frac{q_{\infty}}{q_{0}}=\frac{T^{c}-1}{\left(T^{a}-1\right)\left(T^{b}-1\right)}
\end{gathered}
$$

- Legendre family of elliptic curves: $H^{1}\left(E_{t}\right)$

$$
\begin{aligned}
E_{t}: \quad y^{2} & =x(x-1)(x-t) \\
\frac{q_{\infty}}{q_{0}} & =\frac{(T+1)^{2}}{(T-1)^{2}}
\end{aligned}
$$

- Dwork pencil piece: V

$$
\frac{q_{\infty}}{q_{0}}=\frac{T^{5}-1}{(T-1)^{5}}
$$

Hypergeometric series

- Hypergeometric series $|t|<1$ (classically $\beta_{d}=1$)

$$
\begin{gathered}
u(t)={ }_{d} F_{d-1}\left[\left.\begin{array}{ccc}
\alpha_{1} & \cdots & \alpha_{d} \\
\beta_{1} & \cdots & \beta_{d-1}
\end{array} \right\rvert\, t\right]:=\sum_{n \geq 0} \frac{\left(\alpha_{1}\right)_{n} \cdots\left(\alpha_{d}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{d-1}\right)_{n}} \frac{t^{n}}{n!} \\
(\alpha)_{n}:=\alpha(\alpha+1) \cdots(\alpha+n-1)
\end{gathered}
$$

is the Pochhammer symbol.

- Satisfies linear differential equation of order d with regular singularities at $t=0,1, \infty$.
- Gives rise to a monodromy representation

$$
\rho: \pi_{1}\left(\mathbb{P}^{1} \backslash\{0,1, \infty\}\right) \rightarrow \operatorname{GL}(V)
$$

- $V:=$ space of local solutions of the DE at $z=t \in \mathbb{P}^{1} \backslash\{0,1, \infty\}$.

Integral representation

- In general $\left(b_{d}:=1\right)$

$$
C \int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{d-1} x_{i}^{\alpha_{i}-1}\left(1-x_{i}\right)^{\beta_{i}-\alpha_{i}-1}\left(1-t x_{1} \cdots x_{d-1}\right)^{-\alpha_{d}} d x_{1} \cdots d x_{d-1}
$$

- Our motive is a piece of the middle cohomology of

$$
X_{t}: \quad y^{m}=\prod_{i=1}^{d-1} x_{i}^{a_{i}}\left(1-x_{i}\right)^{b_{i}}\left(1-t x_{1} \cdots x_{d-1}\right)^{a_{d}}
$$

cut out by automorphisms $y \mapsto \zeta_{m} y$ (up to twist by a Hecke character),

- for appropriate a_{i}, b_{i} with m a common denominator of α, β
- Note that $\operatorname{dim} X_{t}=d-1$ whereas w could be much smaller

Chebyshev example

- Interlacing roots

$$
q_{\infty}=\Phi_{30}, \quad q_{0}=\Phi_{1} \Phi_{2} \Phi_{3} \Phi_{5}
$$

$$
\begin{aligned}
& \alpha= 1 / 30,7 / 30,11 / 30,13 / 30,17 / 30,19 / 30,23 / 30,29 / 30 \\
& \beta= 1,1 / 2,1 / 3,2 / 3,1 / 5,2 / 5,3 / 5,4 / 5 \\
& \frac{q_{\infty}}{q_{0}}=\frac{\left(T^{30}-1\right)(T-1)}{\left(T^{15}-1\right)\left(T^{10}-1\right)\left(T^{6}-1\right)} \\
& u(t):=\sum_{n \geq 0} \frac{(30 n)!n!}{(15 n)!(10 n)!(6 n)!}\left(\frac{t}{M}\right)^{n}, \quad M:=\frac{30^{30}}{15^{15} \cdot 10^{10} \cdot 6^{6}}
\end{aligned}
$$

$\frac{(30 n)!n!}{(15 n)!(10 n)!(6 n)!}=1,77636318760,53837289804317953893960, \cdots$ are integral for every n.

- Monodromy group is finite.
- Series $u(t)$: Taylor expansion of an algebraic function of t.
- Degree over $\overline{\mathbb{Q}}(t): 483,840$.
- $\mathcal{H}(t)$: Artin representation of degree 8

$$
\left|W\left(E_{8}\right)\right|=696729600=2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7
$$

MAGMA computation I

- $\alpha=(1 / 4,3 / 4,1 / 4,3 / 4,1 / 2,1 / 2), \beta=(1 / 8,3 / 8,5 / 8,7 / 8,1,1)$
- $d=6, w=3, \mathbf{h}=(1,2,2,1)$
> H:=HypergeometricData([4, 4, 2, 2] , [8, 1, 1]);
> L:=LSeries(H,-1 : BadPrimes:=[<2,17,1+2*x+8*x^2>], Precision:=10);
> time CFENew(L);
Time: 1.980s
0.0000000000

MAGMA computation II

$>L 2:=1+2^{\wedge} 2 * x+3 * 2^{\wedge} 5 * x^{\wedge} 2+2 \wedge 9 * x^{\wedge} 3+2 \wedge 14 * x^{\wedge} 4 ;$
> H := HypergeometricData($[4,4,4,4,2,2,2,2],[8,8,1,1,1,1])$;
> L:=LSeries(H, 1:BadPrimes:=[<2,18,L2>],Precision:=prec [10]);
> time [CFENew(L),Evaluate(L,4),Evaluate(L,4:Derivative:=1)];
[0.0000000000, 0.0000000000, 0.5789920870]
Time: 105.030

$$
d=10, \quad w=7, \quad \mathbf{h}=(1,1,2,1,1,2,1,1)
$$

MAGMA computation II (cont'd)

- Euler factor at $p=3$
[

```
50031545098999707*x^10 + 823564528378596*x^9 + 11203038280413*x^8 +
        192160562544*x^7 + 819482022*x^6 + 26191512*x^5 + 374706*x^4 + 40176*x^3
        + 1071*x^2 + 36*x + 1
```

]
 Time: 0.020

- Euler factor at $p=5$
[
$2910383045673370361328125 * x^{\wedge} 10+4991888999938964843750 * x^{\wedge} 9+$ $4246234893798828125 * x^{\wedge} 8+100299072265625000 * x^{\wedge} 7+386561035156250 * x^{\wedge} 6+$ $2206601562500 * x^{\wedge} 5+4947981250 * x^{\wedge} 4+16433000 * x^{\wedge} 3+8905 * x^{\wedge} 2+134 * x+1$
]
Time: 0.140

Back to Hodge vectors

- By Griffiths transversality \mathbf{h} is a symmetric composition of d
- Total number: $2^{\lfloor d / 2\rfloor}$

$$
\begin{array}{lrr}
(2), & (1,1) & \\
(3), & (1,1,1) & \\
(4), & (2,2), & (1,2,1), \\
(5), & (2,1,2), & (1,3,1), \\
(1,1,1,1,1)
\end{array}
$$

Rank at most 24

- $N(d):=$ total number of families of HGM of rank d
- Graph of $\log (N(d))^{2}$

- Missing Hodge vectors: δ

d	1	\cdots	19	20	21	22	23	24
δ	0	\cdots	0	1	0	2	1	8

Rank 24

- Rank $d=24$. Number of possible Hodge vectors: 4096.
- Total number of family of HGM: 464, 247, 183

\mathbf{h}	$\#$
$[9,1,1,2,1,1,9]$	0
$[7,1,1,1,1,2,1,1,1,1,7]$	0
$[1,6,1,1,1,1,2,1,1,1,1,6,1]$	0
$[4,1,3,1,1,1,2,1,1,1,3,1,4]$	0
$[5,1,2,1,1,1,2,1,1,1,2,1,5]$	0
$[6,1,1,1,1,1,2,1,1,1,1,1,6]$	0
$[4,1,1,2,1,1,1,2,1,1,1,2,1,1,4]$	0
$[4,1,2,1,1,1,1,2,1,1,1,1,2,1,4]$	0

Rank 24

\mathbf{h}	$\#$
$[6,2,1,1,1,2,1,1,1,2,6]$	2
$[8,1,1,1,2,1,1,1,8]$	4
$[1,22,1]$	4
$[8,1,1,4,1,1,8]$	6
$[6,1,2,1,1,2,1,1,2,1,6]$	8
$[6,1,3,1,2,1,3,1,6]$	8
$[10,1,2,1,10]$	10
\vdots	\vdots
$[1,3,4,4,4,4,3,1]$	6082776
$[2,5,5,5,5,2]$	6850823
$[1,3,8,8,3,1]$	6868016
$[1,5,6,6,5,1]$	7637828
$[1,2,4,5,5,4,2,1]$	7982874
$[2,4,6,6,4,2]$	9504072
$[1,4,7,7,4,1]$	9905208

Densities

Log-log graph of densities in rank $d=24$

Average Hodge vector

Rank $d=24$, odd weight

Average Hodge vector

Rank $d=24$, even weight

Weight distribution

Rank $d=24$, odd weight

Weight distribution

Rank $d=24$, even weight

Combinatorial Model

Interlacing pattern $d=5$: $\circ=$ zeros of $q_{0}, \bullet=$ zeros of q_{∞}.

Combinatorial Model (cont'd)

$$
\circ=\text { down, } \bullet=\text { up }
$$

Combinatorial Model (cont'd)

$\circ=$ down, $\bullet=$ up

Combinatorial Model (cont'd)

- Dyck path $d=5$

- Corresponding planted rooted tree

Combinatorial Model (cont'd)

3

2

Average Hodge

Average Hodge vector, compared with an approximation coming from the combinatorial model

Scaled version of

$$
f(x)=\sqrt{\frac{\pi}{8}} \operatorname{Erfc}\left(\frac{|x|}{\sqrt{2}}\right),
$$

