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Riemann Hypothesis (RH)

Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns = 1 +

1
2s +

1
3s + · · ·

=
∏

p, primes

1
1− p−s , s ∈ C, Re(s) > 1

Analytic continuation and Functional equation

Λ(s) := π−s/2Γ(s/2)ζ(s) = Λ(1− s), s ∈ C

Conjecture

The non-trivial zeros of the Riemann zeta function ζ(s) lie on
the line

Re(s) =
1
2
.
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Equivalent statements of RH

Let
π(X ) = #{primes numbers p ≤ X}.

Then

RH ⇐⇒

∣∣∣∣∣π(X )−
∫ X

2

dt
log t

∣∣∣∣∣ = O(X 1/2+ε).

Let
θ(X ) =

∑
p<X

log p.

Then
RH ⇐⇒ |θ(X )− X | = O(X 1/2+ε).
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RH for a curve C over a finite field Fq

Theorem (Weil)

|#C(Fqn )− (1 + qn)| ≤ 2 gC
√

qn.

Remark
To compare with the case for Q:

RH ⇐⇒ |θ(X )− X | = O(X 1/2+ε).
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More L-functions

Example
To an elliptic curve over Q

E : y2 = x3 + ax + b, a,b ∈ Z

Hasse–Weil associates an L-function

L(s,E) =
∏

p: good

1
1− ap p−s + p1−2s

where, for good p

ap = p + 1− E(Fp).
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Grand Riemann Hypothesis (GRH)

There are many other L-functions, e.g., those attached
automorphic representations on GL(N).

Conjecture
Nontrivial zeros of all automorphic L-functions lie on the line

Re(s) =
1
2
.
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A corollary to Riemann Hypothesis

Suppose that an L-function has the following properties
L(s) is an entire function.
L(s) ∈ R if s is real.
L(s) > 0 as s ∈ R and s →∞.

We have
GRH =⇒ L(1/2) ≥ 0,

or more generally, the first non-zero coefficient (i.e., the leading
term) in the Taylor expansion is positive.
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Superpositivity: non-leading terms

Lemma (Stark–Zagier (1980), Yun–Zhang)

Let π be a self-dual cuspidal automorphic representation of
GLn. Normalize its functional equation such that

L(s, π) = ±L(1− s, π).

Then
GRH =⇒ L(r)(1/2, π) ≥ 0, for all r ≥ 0.

Here

L(s, π) =
∞∑

r=0

L(r)(1/2, π)
(s − 1/2)r

r !
.
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The idea of proof

Hadamard product expansion (and the functional equation and
the self-duality)

L(s + 1/2) = c · sr
∏
ρ

(
1− s2

ρ2

)
,

the product runs over all the zeros 1
2 ± ρ of L(s) such that

ρ 6= 0,
r = ords=1/2L(s), and c > 0 is the leading Taylor
coefficient.

Now note that
GRH ⇐⇒ Re(ρ) = 0.
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Super-postivity of L-functions

Super-postivity does not imply GRH. But it implies the
non-existence of Landau–Siegel zero.
Known for Riemann zeta function (Polya, 1927). Sarnak
introduced a notion of “positive definite" for L-functions. If
an L-function is positive definite then it is “super-positive".
Not known if there are infinitely many positive definite
L-functions.
Goldfeld–Huang: there are infinitely many “super-positive"
automorphic L-functions for GL(2).
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Completion of square

The super-positivity suggests us

to express L(r)(1/2, π) in terms of some “squared quantity".

We explain two such examples
(Gross–Zagier, Yuan–Zhang–Zhang) The first derivative

L′(1/2, π) ≥ 0

if π appears in the cohomology of Shimura curve over a
(totally real) number field F .
(Yun–Zhang) “Higher Gross–Zagier formula" over function
fields.
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Gross–Zagier formula

Theorem
Let E be an elliptic curve over Q. There is a point P ∈ E(Q)
such that

L′(1,E) = c · 〈P,P〉,

where the RHS is the Néron–Tate height pairing

〈·, ·〉 : E(Q)× E(Q)→ R

and c is a positive number.

The point P in the above formula is the so-called Heegner
point. The Néron–Tate height pairing is known to be positive
definite. Hence

L′(1,E) ≥ 0.
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Heegner points on modular curve

The modular curve X0(N) is moduli space classifying
elliptic curves with auxiliary structure:

X0(N)

$$

// E

||
SpecQ

The Heegner points are represented by those special
elliptic curves with complex multiplication.
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Drinfeld Shtukas

Now fix k = Fq, and X/k a smooth geometrically connected
curve. We consider the moduli stack of Drinfeld Shtukas of rank
n. For a k -scheme S, we have

ShtrGLn,X (S) =


vector bundles E of rank n on X × S

with minimal modification E → (id× FrobS)∗E
at r -marked points xi : S → X ,1 ≤ i ≤ r


We have

ShtrGLn,X

��
X r = X ×Speck · · · ×Speck X︸ ︷︷ ︸

r times
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Higher Gross–Zagier formula

Theorem (Yun–Zhang)

Fix r ∈ Z≥0. Let E be a semistable elliptic curve over k(X ).
Then there is an algebraic cycle (the Heegner–Drinfeld cycle)
on ShtrPGL2,X such that the E-isotypic component of the cycle
class Zr ,E satisfies

L(r)(1,E) = c ·
(

Zr ,E ,Zr ,E

)
,

where (·, ·) is the intersection pairing.

The Heegner–Drinfeld cycle is defined analogous to Heegner
point on modular curves, by imposing “complex multiplication":
those vector bundles coming from a double covering of the
curve X .
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Comparison with the number field case

In the number field case, the analogous spaces only exist when
r ≤ 1.

1 When r = 0, this is the double-coset space

G(F )\ (G(A)/K ) .

2 When r = 1, the analogous space is Shimura variety

ShG

��

ShtGLn,r

��
SpecZ X r = X ×Speck · · · ×Speck X︸ ︷︷ ︸

r times
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In the function field case, we need not restrict ourselves to the
leading coefficient in the Taylor expansion of the L-functions.

Question
In the number field case, should there be any geometric
interpretation of the non-leading coefficients, for example,
L(r)(1,E) when E is an elliptic curve over Q?

Recall that the conjecture of Birch and Swinnerton-Dyer gives a
geometric interpretation of the leading term

L(r)(1,E) = c · RegE ·XE .
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Intersection pairing on an algebraic surface

S : smooth projective surface over a field k .
Div(S) : free abelian group of divisors on S.
There is an intersection pairing

Div(S)× Div(S)→ Z
(C,D) 7→ C · D
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Hodge index theorem for a surface

Theorem
Let S be a surface over a field k.

If H is an ample divisor, and D · H = 0, then

D · D ≤ 0.

NS(S) = Div(S) modulo numerical equivalence. Then the index
of the intersection matrices of a basis of NS(S) is

(+,−,−,−, · · · ).
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Weil’s proof of RH for curves

Consider a curve X/Fq, and the surface

S = X ×SpecFq X

Compute the intersection matrix of 4 divisors

pt × X , X × pt , ∆, F

F is the graph of the Frobenius

Frobq : X → X .
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Weil’s proof of RH for curves

Denote N = X (Fq). The intersection matrix

T =


0 1 1 1
1 0 1 q
1 1 2− 2g N
1 q N q(2− 2g)


H = pt × X + X × pt ample

=⇒ det(T ) = (N − (1 + q))2 − 4qg2 ≤ 0

=⇒ |N − (1 + q)| ≤ 2g
√

q.
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Arithmetic surface

An arithmetic surface X is the data of a relative curve
X → SpecZ with a metric on the Riemann surface X (C).

X

��

// X

��

// X

��
SpecQ // SpecZ // SpecZ

Arakelov defined an intersection pairing on an arithmetic
surface.

23
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Hode index theorem for arithmetic surface

Theorem (Faltings, Hriljac)

Let X be an arithmetic surface.

If H is an ample divisor, and D · H = 0, then

D · D ≤ 0.

Remark
This positivity together with Gross–Zagier formula implies
L′(1,E) ≥ 0. (in addition to RH over finite fields)
Comparison the proof of L′(1,E) ≥ 0 with the proof of RH
for curve over a finite field. The geometric ingredients in
them seem to be the best evidence to RH.
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Yuan’s proof of Hodge index for arithmetic surfaces

Yuan: an arithmetic line bundle L 7→ a convex body in R2.

Lemma (Brunn–Minkowski)

Let A,B be two compact subsets of Rn, and let A + B denote
the Minkowski sum

A + B = {a + b : a ∈ A,b ∈ B} ⊂ Rn.

Then
vol(A + B)1/n ≥ vol(A)1/n + vol(B)1/n.
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Surfaces

The first kind is a surface over a filed k , e.g. C × C for a
curve C over k .
The second kind is arithmetic surface: its base is an
arithmetic curve SpecZ and its fiber are curves over fields.
The third kind is unknown: “SpecZ×SpecF1 SpecZ"? It should
be a fibration with its base an arithmetic curve SpecZ and
with fibers also being arithmetic curves.
An “arithmetic surface" seems to be an “arithmetic
average" of the first and the third kinds.
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The third example: ABC and Landau–Seigel zeros

Definition
A Landau–Siegel zero is a zero β of L(s, χd ) (for the quadratic
character χd associated to Q[

√
d ]) lying in

[1− c/ log |d |,1]

for a small c > 0.

Theorem (Granville–Stark)
A uniform (over number fields) version of ABC conjecture
implies that there are no Siegel zeros for L(s, χ−d ) with −d < 0.
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Faltings heights of CM abelian varieties

The key to the theorem of Granville–Stark is Kronecker limit
formula for an imaginary quadratic field K = Q[

√
−d ]. This

formula relates the Faltings height of an elliptic curve Ed with
complex multiplication by OK to L-function

hFal(Ed ) = −L′(0, χ−d )

L(0, χ−d )
− 1

2
log |d |.

Colmez conjecture generalizes the identity to CM abelian
varieties. An averaged version is recently proved by Yuan–S.
Zhang and by Andreatta–Goren–Howard–Pera.
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Thank you!

Positivity of L-functions
and

“Completion of square"

Wei Zhang

Massachusetts Institute of Technology

Bristol, June 4th, 2018
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