Positivity of L-functions
and
“Completion of square"

Wei Zhang

Massachusetts Institute of Technology

Bristol, June 4th, 2018



Outline

o Riemann hypothesis
@ Positivity of L-functions
e Completion of square

Q Positivity on surfaces



Riemann hypothesis

Riemann Hypothesis (RH)

Riemann zeta function
1 1 1

() =D s =1+t gs++
n=1
1
p, primes

Analytic continuation and Functional equation
A(s) := 7 5/2I(s/2)¢(s) = N1 —s), seC



Riemann hypothesis
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Riemann zeta function
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p, primes

Analytic continuation and Functional equation
A(s) := 7 5/2I(s/2)¢(s) = N1 —s), seC

The non-trivial zeros of the Riemann zeta function ((s) lie on
the line
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Riemann hypothesis

Equivalent statements of RH

@ Let
w(X) = #{primes numbers p < X}.
Then
RH < (X)—/th _ O(X'/2+)
2 |Ogt B ’
@ Let
0(X) = Z log p.
p<X
Then

RH < |0(X) — X| = O(X/2%¢),
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RH for a curve C over a finite field I

Theorem (Weil)
[#C(Fgr) — (149" <29c/q™.




Riemann hypothesis

RH for a curve C over a finite field I

Theorem (Weil)
[#C(Fgr) — (149" <29c/q™.

To compare with the case for Q:

RH «— |0(X) — X| = O(X1/2+9).




Riemann hypothesis

More L-functions

To an elliptic curve over Q
E:y?’=x*+ax+b, abelZ

Hasse—Weil associates an L-function

L(s,E)= ]

p: good

1
1 — app—S +p1—2$

where, for good p

a=p+1—E(Fp).




Riemann hypothesis

Grand Riemann Hypothesis (GRH)

There are many other L-functions, e.g., those attached
automorphic representations on GL(N).

Nontrivial zeros of all automorphic L-functions lie on the line
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Positivity of L-functions

A corollary to Riemann Hypothesis

Suppose that an L-function has the following properties
@ L(s) is an entire function.
@ L(s) eRifsisreal
@ [(s)>0asscRand s — cc.

We have
GRH = L(1/2) > 0,



Positivity of L-functions

A corollary to Riemann Hypothesis

Suppose that an L-function has the following properties
@ L(s) is an entire function.
@ L(s) eRifsisreal
@ [(s)>0asscRand s — cc.
We have
GRH = L(1/2) > 0,

or more generally, the first non-zero coefficient (i.e., the leading
term) in the Taylor expansion is positive.



Positivity of L-functions

Superpositivity: non-leading terms

Lemma (Stark—Zagier (1980), Yun—Zhang)

Let 7 be a self-dual cuspidal automorphic representation of
GL,. Normalize its functional equation such that

L(s,m)=+L(1—s,7).

Then
GRH — L((1/2,7) > 0, forall r > 0.

Here

L(s,m) =3 LO(1/2,7) (S—r‘||/2)r
r=0

[}



Positivity of L-functions

The idea of proof

Hadamard product expansion (and the functional equation and
the self-duality)

L(s+1/2):c-er<1 —52),

2

@ the product runs over all the zeros % + p of L(s) such that
p #0,

@ r =ords_1/2L(s), and ¢ > O is the leading Taylor
coefficient.

Now note that
GRH <= Re(p) = 0.



Positivity of L-functions

Super-postivity of L-functions

@ Super-postivity does not imply GRH. But it implies the
non-existence of Landau—Siegel zero.
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Super-postivity of L-functions

@ Super-postivity does not imply GRH. But it implies the
non-existence of Landau—Siegel zero.

@ Known for Riemann zeta function (Polya, 1927). Sarnak
introduced a notion of “positive definite" for L-functions. If
an L-function is positive definite then it is “super-positive".
Not known if there are infinitely many positive definite
L-functions.



Positivity of L-functions

Super-postivity of L-functions

@ Super-postivity does not imply GRH. But it implies the
non-existence of Landau—Siegel zero.

@ Known for Riemann zeta function (Polya, 1927). Sarnak
introduced a notion of “positive definite" for L-functions. If
an L-function is positive definite then it is “super-positive".
Not known if there are infinitely many positive definite
L-functions.

@ Goldfeld-Huang: there are infinitely many “super-positive"
automorphic L-functions for GL(2).



Completion of square

6 Riemann hypothesis
@ Positivity of L-functions
e Completion of square

e Positivity on surfaces



Completion of square

Completion of square

The super-positivity suggests us
to express L(’)(1 /2, ) in terms of some “squared quantity".

We explain two such examples
@ (Gross—Zagier, Yuan—Zhang—Zhang) The first derivative

L'(1/2,7) >0

if = appears in the cohomology of Shimura curve over a
(totally real) number field F.



Completion of square

Completion of square

The super-positivity suggests us
to express L(’)(1 /2, ) in terms of some “squared quantity".

We explain two such examples
@ (Gross—Zagier, Yuan—Zhang—Zhang) The first derivative

L'(1/2,7) >0

if = appears in the cohomology of Shimura curve over a
(totally real) number field F.

@ (Yun—Zhang) “Higher Gross—Zagier formula" over function
fields.
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Gross—Zagier formula

Let E be an elliptic curve over Q. There is a point P € E(Q)
such that

L'(1,E)=c- (P, P),
where the RHS is the Néron—Tate height pairing
() E(QxE@Q) —R

and c is a positive number.




Completion of square

Gross—Zagier formula

Let E be an elliptic curve over Q. There is a point P € E(Q)
such that
L'(1,E)=c- (P, P),

where the RHS is the Néron—Tate height pairing
() E(QxE@Q) —R

and c is a positive number.

The point P in the above formula is the so-called Heegner
point. The Néron—Tate height pairing is known to be positive
definite. Hence

L'(1,E) > 0.

13



Completion of square

Heegner points on modular curve

@ The modular curve Xp(N) is moduli space classifying
elliptic curves with auxiliary structure:

Xo(N) E

~

Spec Q

@ The Heegner points are represented by those special
elliptic curves with complex multiplication.



Completion of square

Drinfeld Shtukas

Now fix k = Fq, and X /k a smooth geometrically connected
curve. We consider the moduli stack of Drinfeld Shtukas of rank
n. For a k-scheme S, we have

vector bundles £ of rank non X x S
Shtg, x(S) = { with minimal modification € — (id x Frobg)*€
at r-marked points x; : S — X, 1 <i<r
We have
ShtngX

|

X=X XSpeck * " * ><Speck)(

~
r times

15
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Higher Gross—Zagier formula

Theorem (Yun—Zhang)

Fix r € Z>o. Let E be a semistable elliptic curve over k(X).
Then there is an algebraic cycle (the Heegner—Drinfeld cycle)
on Sht{,GL& x such that the E-isotypic component of the cycle
class Z; g satisfies

LI, E) = - (zr,E,zr,E>,

where (-, ) is the intersection pairing.
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Higher Gross—Zagier formula

Theorem (Yun—Zhang)

Fix r € Z>o. Let E be a semistable elliptic curve over k(X).
Then there is an algebraic cycle (the Heegner—Drinfeld cycle)
on Sht{,GL& x such that the E-isotypic component of the cycle
class Z; g satisfies

LI, E) = - (zr,E,zr,E>,

where (-, ) is the intersection pairing.

The Heegner—Drinfeld cycle is defined analogous to Heegner
point on modular curves, by imposing “complex multiplication":
those vector bundles coming from a double covering of the

curve X.
16



Completion of square

Comparison with the number field case

In the number field case, the analogous spaces only exist when
r<t.

@ When r = 0, this is the double-coset space
G(F)\ (G(A)/K).
© When r = 1, the analogous space is Shimura variety

ShG ShtGLn,r

SpecZ X" = X Xspeck *** Xspeck X

r times



Completion of square

In the function field case, we need not restrict ourselves to the
leading coefficient in the Taylor expansion of the L-functions.

In the number field case, should there be any geometric
interpretation of the non-leading coefficients, for example,
L((1, E) when E is an elliptic curve over Q?




Completion of square

In the function field case, we need not restrict ourselves to the
leading coefficient in the Taylor expansion of the L-functions.

In the number field case, should there be any geometric
interpretation of the non-leading coefficients, for example,
L((1, E) when E is an elliptic curve over Q?

Recall that the conjecture of Birch and Swinnerton-Dyer gives a
geometric interpretation of the leading term

L, E) = c- Regg - Mg,
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Positivity on surfaces

Intersection pairing on an algebraic surface

S: smooth projective surface over a field k.
Div(S): free abelian group of divisors on S.
There is an intersection pairing

Div(S) x Div(S) — Z
(C,D)y—~C-D



Positivity on surfaces

Hodge index theorem for a surface

Let S be a surface over a field k.

If H is an ample divisor, and D - H = 0, then

D-D<O0.

20



Positivity on surfaces

Hodge index theorem for a surface

Let S be a surface over a field k.

If H is an ample divisor, and D - H = 0, then

D-D<O0.

NS(S) = Div(S) modulo numerical equivalence. Then the index
of the intersection matrices of a basis of NS(S) is

(_|_7_7_7_’...)_

20



Positivity on surfaces

Weil’s proof of RH for curves

Consider a curve X /Fq, and the surface
S=X xSpech X
Compute the intersection matrix of 4 divisors

ptx X, Xxpt, A, F

21



Positivity on surfaces

Weil’s proof of RH for curves

Consider a curve X /Fq, and the surface
S = X Xspecry X
Compute the intersection matrix of 4 divisors
ptx X, Xxpt, A, F
F is the graph of the Frobenius

Frobg : X — X.

21



Positivity on surfaces

Weil’s proof of RH for curves

Denote N = X(F4). The intersection matrix

0 1 1 1
110 1 q
T=11 1 2-2g N

1 q q(2 -29)

H=ptx X+ X xpt ample

29



Positivity on surfaces

Weil’s proof of RH for curves

Denote N = X(F4). The intersection matrix

1 1

1 q

2—-29 N
q(2 —29)

T =

—_ - O
_Q_LO_L

H=ptx X+ X xpt ample

= det(T) = (N~ (1+q))* —4q9® <0

29



Positivity on surfaces

Weil’s proof of RH for curves

Denote N = X(F4). The intersection matrix

1 1

1 q

2—-29 N
q(2 —29)

T =

—_ - O
_Q_LO_L

H=ptx X+ X xpt ample
— det(T)=(N—(1+ @))% —4qg® <0

= IN-(1+9)<29vq.

29



Positivity on surfaces

Arithmetic surface

An arithmetic surface X is the data of a relative curve
X — SpecZ with a metric on the Riemann surface X(C).

X X

R

SpecQ —— SpecZ —— SpecZ

29



Positivity on surfaces

Arithmetic surface

An arithmetic surface X is the data of a relative curve
X — SpecZ with a metric on the Riemann surface X(C).

X X X
SpecQ —— SpecZ —— SpecZ

Arakelov defined an intersection pairing on an arithmetic
surface.

29



Positivity on surfaces

Hode index theorem for arithmetic surface

Theorem (Faltings, Hriljac)
Let X be an arithmetic surface.

If H is an ample divisor, and D - H = 0, then

D-D<

o

24



Positivity on surfaces

Hode index theorem for arithmetic surface

Theorem (Faltings, Hriljac)
Let X be an arithmetic surface.

If H is an ample divisor, and D - H = 0, then
D-D

@ This positivity together with Gross—Zagier formula implies
L'(1,E) > 0. (in addition to RH over finite fields)

@ Comparison the proof of L'(1, E) > 0 with the proof of RH
for curve over a finite field. The geometric ingredients in
them seem to be the best evidence to RH.

IN
o

24



Positivity on surfaces

Yuan’s proof of Hodge index for arithmetic surfaces

Yuan: an arithmetic line bundle £ — a convex body in R?.

Lemma (Brunn—Minkowski)

Let A, B be two compact subsets of R", and let A+ B denote
the Minkowski sum

A+B={a+b:acAbeB}cR"
Then

vol(A+ B)'/™ > vol(A)"/" + vol(B)'/".

25



Positivity on surfaces

Surfaces

@ The first kind is a surface over a filed k, e.g. C x C for a
curve C over K.

@ The second kind is arithmetic surface: its base is an
arithmetic curve SpecZ and its fiber are curves over fields.

26
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Surfaces

@ The first kind is a surface over a filed k, e.g. C x C for a
curve C over K.

@ The second kind is arithmetic surface: its base is an
arithmetic curve SpecZ and its fiber are curves over fields.

@ The third kind is unknown: “SpecZ X specr, SpecZ"? It should

be a fibration with its base an arithmetic curve SpecZ and
with fibers also being arithmetic curves.
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Positivity on surfaces

Surfaces

@ The first kind is a surface over a filed k, e.g. C x C for a
curve C over K.

@ The second kind is arithmetic surface: its base is an
arithmetic curve SpecZ and its fiber are curves over fields.

@ The third kind is unknown: “SpecZ X specr, SpecZ"? It should
be a fibration with its base an arithmetic curve SpecZ and
with fibers also being arithmetic curves.

@ An “arithmetic surface" seems to be an “arithmetic
average" of the first and the third kinds.

26



Positivity on surfaces

The third example: ABC and Landau—Seigel zeros

Definition
A Landau-Siegel zero is a zero g of L(s, x4) (for the quadratic
character x4 associated to Q[v/d]) lying in

[1—c/log|d|, 1]

for a small ¢ > 0.

27



Positivity on surfaces

The third example: ABC and Landau—Seigel zeros

Definition
A Landau-Siegel zero is a zero g of L(s, x4) (for the quadratic
character x4 associated to Q[v/d]) lying in

[1—c/log|d|, 1]

for a small ¢ > 0.

Theorem (Granville—Stark)

A uniform (over number fields) version of ABC conjecture
implies that there are no Siegel zeros for L(s, x_g) with —d < 0.




Positivity on surfaces

Faltings heights of CM abelian varieties

The key to the theorem of Granville—Stark is Kronecker limit
formula for an imaginary quadratic field K = Q[v/—d]. This
formula relates the Faltings height of an elliptic curve E4 with
complex multiplication by Ok to L-function

L'(0,xq) 1

— —log|d]|.

Mra(Bd) = ~T0 ) " 2

28



Positivity on surfaces

Faltings heights of CM abelian varieties

The key to the theorem of Granville—Stark is Kronecker limit
formula for an imaginary quadratic field K = Q[v/—d]. This
formula relates the Faltings height of an elliptic curve E4 with
complex multiplication by Ok to L-function

L'(0,xq) 1

— —log|d|.

Mra(Bd) = ~T0 ) " 2

Colmez conjecture generalizes the identity to CM abelian
varieties. An averaged version is recently proved by Yuan-S.
Zhang and by Andreatta—Goren—Howard—Pera.

28
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Thank you!

Positivity of L-functions

and
“Completion of square”

Wei Zhang
Massachusetts Institute of Technology

Bristol, June 4th, 2018
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