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DeVerdière tentative conjecture, 1983

In his pioneering paper: Yves Colin de Verdière, Pseudo-laplaciens II, An-
nales de l’institut Fourier, tome 33 (1983), 87-113, the author formulated a
somewhat tentative conjecture stating that the zeros sj of the function

∫ ∞
0

∣∣∣E(ρ, 1
2 + ir

)∣∣∣2
sj(1− sj)− (1

4 + r2)
dr

where E(ρ, s) is the Eisenstein series associated to the cubic root of unity
ρ, are precisely the zeros of the Eisenstein series. He proved some nu-
merical lower bounds consistent with the conjecture.

In what follows, we write Es(z) for the Eisenstein series, always using the
subscript symbol for the complex variable, while the variable in parenthe-
ses is the parameter in the fundamental domain.



Numerics of zeros of CdV functional

ζ(s)L(s, χ−3) = 0 zeros of CdV functional

7.01

8.03973715568143 8.019

11.24920620777292 11.072

14.13472514173469 14.070

15.70461917672160 ?

18.26199749569307 [18.0,18.1]

20.45577080774248 ?

21.02203963877155 ?

24.05941485649342 [24.0,24.01]

25.01085758014568 ?

26.57786873577453 ?

28.21816450623334 ?

30.42487612585952 ?

Old computation. Much better data are available elsewhere.



Heegner distributions

a) d < 0 a discriminant (not necessarily a fundamental discriminant)

b) h′(d) is the number of Lagrange reduced quadratic forms Ax2 +Bxy+

Cy2 of discriminant d = B2 − 4AC weighted by their Heegner points,
namely:

Heegner points z = −B+
√
d

2A ∈ Γ\H, counted with weight w(z) = 1

(but w(ρ) = 1/3 and w(i) = 1/2)

c) the Heegner distribution θd and the Hirzebruch–Zagier modified class
number h′(d) are given by

θd =
∑

z∈Hd
w(z)δncz , h′(d) =

∑
z∈Hd

w(z)



Constant term distributions and Eisenstein series

The constant term distribution at height a > 0 is by definition

ηaf =
∫ 1

0
f(a+ ix)dx.

It is a compactly supported, real-valued, regular Borel measure on Γ\H
and a continuous functional on C0(Γ\H).

A pseudo-Eisenstein series is the sum of all translates by Γ of a smooth
function on (0,∞) with compact support:

Ψϕ(z) =
∑

γ∈Γ∞\Γ
ϕ(=(γz)) (ϕ ∈ C∞c (0,∞)).

A classical Eisenstein series is

Es(z) :=
∑

γ∈Γ∞\Γ
=(γz)s (Γ∞ = parabolic stabilizer of the cusp i∞)

and by analytic continuation for general s.



The zeta function of orders in imaginary quadratic fields, I

Let d = dof2 where d0 is a fundamental discriminant and let Od be the
order of discriminant d in the ring of integers of the field Q(

√
d0). Then

∑
y∈Zd

w(z)Es(z) =

(√|d|
2

)s
ζ(s,Od)

ζ(2s)

where Od is the order of discriminant d in the ring of integers of the field
Q(
√
d0). This again has an Euler product, as one sees from

∑
z∈Zd

w(z)Es(z) =

(√|d|
2

)s
ζ(s,Od)

ζ(2s)

=

(√|d|
2

)sζ(s)L(s, χd0
)

ζ(2s)

∑
δmk|f

µ(δ)µ(m)χd0
(m)k

(δmk2)s
.

The important fact is that the zeta function of the order is divisible by ζ(s)

and L(s, χd0
). This is a really amazing property, yielding the existence

of infinitely many finite linear combinations of Eisenstein series having in-
finitely many non-trivial zeros in common.



The zeta function of orders in imaginary quadratic fields, II

By D and the weight W (D), we mean:

• A set D of discriminants d < 0, with associated fundamental dis-
criminant d0, hence d = d0f

2, with d0 = (−1,−4,−8)×{odd
squarefree number}
• For each discriminant d ∈ D, we have the Heegner set Zd of Heeg-

ner points z, each taken with weight νdw(z), and associated distribu-
tion νdθd
• The weight W (D) of D is given by:

W (D) =
∑

(d,νd)∈D
νdh
′(d).

We refer to the set of triples {d, θd, νd} as a complete Heegner set.



Spectral decomposition and spectral synthesis

The spectral transform f → Ef of a pseudo-Eisenstein series is

Ef(s) =
∫

Γ\H
f(z)E1−s(z) dωz

with dωz = y−2 dx dy the hyperbolic area element at z.

At least pointwise, we have convergence of the spectral synthesis for f in
the closure of the space of pseudo-Eisenstein series, namely:

f(z) =
〈f,1〉 · 1
〈1,1〉

+
1

4πi

∫
(1

2)
Ef(s) · Es(z) ds (for f ∈ D)

where
∫
(1

2)
is integration along the vertical line <(s) = 1

2.



The spectral synthesis of the non-cuspidal Dirac functional

The spectral expansion of the non-cuspidal Dirac functional is

δncz0
=

1

〈1,1〉
+

1

4πi

∫
(1

2)
E1−s(z0) · Es ds

hence

Eδncz0(s) = E1−s(z0).

Thus δncz0
f = f(z0), as expected.



The spectral synthesis of θd

We denote by χd the quadratic character determined by the Kronecker
symbol (d/·). This is a primitive character if and only if d is a fundamental
discriminant. In every case we have

Eθd =

(√|d|
2

)s
ζ(s,Od)

ζ(2s)
.

By linearity, this extends to D in place of d and the condition W (D) = 0

ensures the orthogonality property

〈θD, 1〉 = 0

and θD ∈ V ⊥1
−1−ε. We have the spectral expansion

θD =
W (D) · 1
〈1,1〉

+
1

4πi

∫
(1

2)
E1−s(D) · Es ds

and the functional equation Es(D) = csE1−s(D).



Recall of basic notation

We define the rth weighted L2 norm | · |Xr on ED⊥1 by

|Ef |2Xr :=
1

4πi

∫
(1

2)
|Ef(s)|2 λrs ds (f ∈ D⊥1, λs = s(1− s))

The corresponding Sobolev norm on D⊥1 is

|f |2r := |Ef |2Xr.

and

Xr = completion of ED⊥1 with respect to | · |Xr.

We also define

V ⊥1
r = completion of D⊥1 with respect to | · |r , Vr = C⊕ V ⊥1

r .



Main properties of Eisenstein series

Here S is S = −∆ with ∆ the hyperbolic Laplacian.

(S + λs)Es(z) = 0, Es(z) = csE1−s(z)

with cs given by

cs =
√
π

Γ(s− 1
2)ζ(2s− 1)

Γ(s)ζ(2s)
=
ξ(2− 2s)

ξ(2s)
,

where in the last step ξ(s) is the completed Riemann zeta function. This
yields

csc1−s = 1, c1
2

= −1, E1
2
(z) = 0.

The Eisenstein series Es(z) is not in L2 because

ys + csy
1−s =

∫ 1

0
Es(x+ iy) dx,

yielding a logarithmic divergence of the L2 norm at the cusp.



Solving (−∆− λw)u = θD and (−∆− λw)u = ηa

For <(w) > 1
2, the equation (−∆ − λw)u = θD has an unique solution

uD,w, in fact in V3
2−ε

for ε > 0, with spectral expansion

uD,w =
W (D) · 1

(λ1 − λw) · 〈1,1〉
+

1

4πi

∫
(1

2)
E1−s(D) · Es

ds
λs − λw

with W (D) the weight of D.

For <(w) > 1
2 the equation (−∆ − λw)u = ηa has an unique solution

vw,a ∈ V3
2−ε

for all ε > 0, with spectral expansion

vw,a =
1

(λ1 − λw) · 〈1,1〉
+

1

4πi

∫
(1

2)
(a1−s + c1−sa

s) · Es
ds

λs − λw
.



Solving S̃u = λwu with a certain Friedrichs extension S̃

Here S̃ is the Friedrichs extension of S which “ignores” the 2-dimensional
space Θ = ker(θD ⊕ ηa), which plays the role of a “boundary condition”.

Theorem The condition for the existence of a non-zero solution

u = z1uD,w + z2vw,a

of S̃u = λwu is the vanishing of the determinant

det


θD(uD,w) θD(vw,a)

ηa(uD,w) ηa(vw,a)

 = 0.



Computing ηa(vw,a) for a > 1 and <(w) > 1
2

The computation of ηa(vw,a) is quite easy from the spectral expansion:

ηa(vw,a) =
1

(λ1 − λw) · 〈1,1〉
+

1

4πi

∫
(1

2
)
(a1−s + c1−sa

s)(as + csa
1−s)

ds
λs − λw

=
1

(λ1 − λw)〈1,1〉
+

1

4πi

∫
(1

2
)
(a+ c1−sa

2s + csa
2−2s + a)

ds
λs − λw

(use csc1−s = 1)

=
1

(λ1 − λw)〈1,1〉
+

1

2πi

∫
(1

2
)
(a+ csa

2−2s)
ds

λs − λw
(s→ 1− s in one term).

By moving the line of integration to +∞ one finds

ηa(vw,a) = −
a

w − (1− w)
−

cwa
2−2w

w − (1− w)

=
a+ cwa

2−2w

1− 2w
(a > 1, <(w) > 1

2).



Computing θD(vw,a) for a > 1 and <(w) > 1
2

δnc
z (vw,a) =

1

(λ1 − λw)〈1,1〉
+

1

4πi

∫
(1

2)
ηaE1−s(z) · Es(z)

ds
λs − λw

=
1

(λ1 − λw)〈1,1〉
+

1

4πi

∫
(1

2)
(a1−s + c1−sa

s) · Es(z)
ds

λs − λw

=
1

(λ1 − λw)〈1,1〉
+

1

2πi

∫
(1

2)
a1−sEs(z)

ds
λs − λw

. (1)

The computation of the integral requires some extra care, which depends
on the height of z relative to a. To this end, we proceed as before moving
the line of integration from σ = 1

2 to σ = C where C > 1 , thereby
acquiring the contribution of residues at s = w and also at s = 1 from the
Eisenstein series.



Computing θD(vw,a), continued

This yields

δnc
z (vw,a) =

a1−wEw(z)

1− 2w
+

1

2πi

∫
(C)

a1−sEs(z)
ds

λs − λw
The series for Es(z) =

∑′ ys/|mz + n|2s with z = x + iy is absolutely
convergent for <(s) = c > 1 and for y → ∞ it is asymptotic to ys. If
y/a < 1 one may move the line of integration all the way to C = +∞,
showing that the integral in question vanishes.

If instead y/a > 1, only the finitely many terms with |mz + n|2 6 y/a

contribute to the integral. In fact, in this case it must be that m = 0 and
n = ±1. Then one moves the line of integration backwards all the way to
−∞, encountering two residues at s = w and s = 1−w and with the limit
of the integral being 0. The final result is

δnc
z (vw,a) =

a1−wEw(z)

1− 2w
−
a1−wyw − awy1−w

1− 2w
.



Computing θD(vw,a), end

Theorem Let a > 1, <(w) > 1
2 and assume that a is not equal to the

imaginary part of any Heegner point occurring in D. Then

θD(vw,a) =
1

1− 2w

{
a1−wEw(D)−Rw(D, a)

}
where we have set

Rw(D, a) =
∑
d

νd
∑

x+iy∈Zd
y>a

(a1−wyw − awy1−w).

Computing ηa(uD,w) for a > 1 and <(w) > 1
2

Theorem ηa(uD,w) = θD(vw,a).

Computing θD(uD,w) for a > 1 and <(w) > 1
2

Theorem If W (D) = 0 then

θD(uD,w) =
1

4πi

∫
(1

2)
|Es(D)|2

ds
λs − λw

.



The resolvent

Theorem For all a > 1, all w with 1
2 < <(w) < 1 and off (1

2,1), and all
D with W (D) = 0, it holds

a+ cwa
2−2w

1− 2w

1

4πi

∫
(1

2)
|Es(D)|2

ds
λs − λw

−
1

(1− 2w)2

(
a1−wEw(D)−Rw(D, a)

)2
6= 0

where

Es(D) =
∑
d∈D

νd

(√|d|
2

)s
ζ(s,Od)

ζ(2s)

and where

Rw(D, a) = a
∑
d

νd
∑

x+iy∈Zd
y>a

(
(y/a)w − (y/a)1−w

)
.

Proof Since the operator is self-adjoint, any eigenvalue w(1−w) must
be real and positive.



The average of zeta-functions of orders of quadratic fields

No matter the choice of D, the function Es(D) is divisible by ζ(s)/ζ(2s).
The average of zeta-functions of orders was done by A.I. Vinogradov and
Thaktadzhyan in 1981. Here it is (with our notation):

Theorem Let D be the set of all negative discriminants of absolute value
up toD, all of them counted with weight νd = 1. Let s = σ+it, 0 6 σ 6 1,
ε > 0, and t fixed. Then as D →∞ it holds

Es(D) = Φ(s)D1+s/2 + csΦ(1− s)D1+(1−s)/2 +Ws(D)

where

Φ(s) =
2−sζ(s)

(s+ 2)ζ(s+ 2)

and Ws(D) = O
(
|ζ(2s)|−1(1 + |cs|)D

3
4+ε

)
.



The asymptotic evaluation of Rw(D, a) for fixed w

We take D = {D/K2 < |d| 6 D} where K → ∞ at a suitably slow
rate and split the interval into two parts, each with constant weight chosen
so to satisfy W (D) = 0. An immediate appeal to the well-known Perron
formula for estimating a partial sum of a Dirichlet series fails, because the
range of summation depends on |d|. Moreover, there is no smoothing of
the sum and the last term can play a significant role. So, the pedestrian
way was to apply the Perron formula to each sum, averaging the individual
results. After two weeks, the conclusion was only a lemma:
Lemma Let w = u+iv and assume 0 < u < 1. LetD/K2 < D∗ 6 D.
Then for ε > 0 it holds

∑
|d|6D∗

(√|d|
2

)w ∑
A<
√
|d|/DK

b(d,A)

Aw
=

1

3ζ(3)

K1−w

1− w
D1+w

2

(
D∗

D

)3
2

+O

Kmax(1
2−u,0)+εD1+u

2

(
D∗

D

)3
2





The smart evaluation of Rw(D, a) for fixed w

The smart evaluation of the sum was done by Henryk Iwaniec in just two
hours (not two weeks). Iwaniec’s evaluation of Rw(a,D) yields a precise
asymptotic formula:

Theorem (Iwaniec) Split the interval [D/K2, D] into two subintervals
∆1 ∪∆2 at the point D1 = αD with 0 < α < 1 fixed, taking weights
νd = τ < 0 on ∆1, νd = 1 on ∆2.

Then we have

Rw(D) = Q(w;D,K)−Q(1− w;D,K) +O
(
(1 + |w|)K−1D

3
2
)

with

Q(w;D,K) =
Kw−1ζ(w)

4(w + 2)ζ(w + 2)

(
1− (1− τ)α1+w

2
)
D

3
2.

Note: The condition W (D) = 0 is not needed here.
Note: BothQ(w;D,K) andQ(1−w;D,K) vanish when w is a non-trivial
zero of the zeta function.



Evaluation of Ew(D, a) for fixed w with <(w) > 1
2

Here, w belongs to any fixed compact set in the open infinite strip 1
2 <

<(w) < 1. The evaluation follows immediately from the Vinogradov–
Tathkadzhyan theorem:

Theorem Split the interval [D/K2, D] into two subintervals ∆1 ∪∆2 at
the point D1 = αD with 0 < α < 1 fixed and take weights νd = τ < 0 on
∆1, νd = 1 on ∆2, satisfying the condition

∑
d νdh

′(d) = 0.
Then with these weights, a =

√
D/(2K), and 1

2 < <(w) < 1, it holds

a1−wEw(D) =
Kw−1ζ(w)

2(w + 2)ζ(w + 2)
D

3
2
(
1− (1− τ)α1+w

2 +O(K−2)
)
.

This asymptotic evaluation is uniform in w only for w in any fixed compact
subset of the open vertical strip 1

2 < <(w) < 1.



The weighted L2 mean of Es(D, a) when <(s) = 1
2

The evaluation of the left-hand side of the resolvent is not yet completed
at this time. By symmetry, it suffices to consider only the integral on the
half-line <(s) = 1

2, =(s) > 0. The Vinogradov–Tathkadzhyan theorem
shows immediately that the integral over an initial segment [0, T0] with
T0 = o(logD) is of precise order D

5
2 .

However, the Vinogradov–Tathkadzhyan estimate fails completely when T0

is large and one can show, somewhat indirectly, that the correct order of the
weighted L2-mean is actually of order T

5
2(logT )A+o(1) for some strictly

positive constant A. As yet, we do not know the exact asymptotics in ques-
tion and it presents an interesting question for the analytic number theorist.

This can be seen as follows.



A picture of (a+ cwa2−2w)/(1− 2w)

all points
a+ cwa2−2w

1− 2w
when a = 2, w =

1

2
+ iv, v ∈ [0.1,11.7]

This shows that =
(
a+cwa2−2w

1−2w

)
> 0 when <(w) = 1

2 . In fact, it is strictly
positive if <(w) > 1

2 (Lax and Phillips, 1976).



Two more pictures of (a+ cwa2−2w)/(1− 2w)

a = 2, w ∈
1

2
+ [5,11.7] i a = 2, w ∈ 0.55 + [5,11.7] i



A necessary condition to be satisfied (Peter Sarnak and Tom Spencer)

Let us write

F :=


θD(uD,w) θD(vw,a)

ηa(uD,w) ηa(vw,a)


and F ∗ for the complex conjugate of the transpose. Then it must be that
the matrix C := (F − F ∗)/(2i) is a positive definite hermitian matrix,
hence detC > 0. Since η(u) = θ(v), this means that the condition

=(θD(uD,w)) · =(ηa(vw,a)) > =(θD(vw,a))2

must be pointwise satisfied when <(w) > 1
2.

This condition is stronger than the non-vanishing of the resolvent
θ(u)η(v) − θ(v)2. Compare with the preceding picture arising from a
1× 1 matrix, rather than 2× 2.



The explicit formula

More explicitly,

=
(

1

4πi

∫
(1

2)
|Es(D)|2

ds
λs − λw

)
×=

(
a+ cwa

2−2w

1− 2w

)

>
{
=
[

1

1− 2w

(
a1−wEw(D)−Rw(D, a)

)]}2
.

Recalling that a =
√
D/(2K), whenK →∞ and w = u+iv is fixed with

1
2 < u < 1 and v 6= 0, this yields when α→ 0 the asymptotic inequality

=
(

1

4πi

∫
(1

2)
|Es(D)|2

ds
λs − λw

)
×=

(
1

1− 2w

)
>∼ 2K ×

{
=
(

Kw−1ζ(w)

4(1− 2w)(w + 2)ζ(w + 2)

)}2

D
5
2.

Since we can take D → ∞ and K → ∞ (slowly!) and since w = u + iv

is at our disposal with 1
2 < u < 1, this proves that as D →∞ the left-hand

side is of order strictly greater than D
5
2 .



Open problem

FIND AN ASYMPTOTIC FORMULA FOR

1

4πi

∫
(1

2)
|Es(D)|2

ds
λ2
s

Remark By a well-known estimate of Jutila, it is not difficult to show that
the order of magnitude in question does not exceed D

5
2 logAD for some

not too large A, while we have shown in a roundabout way that it cannot
be D

5
2 .



THE END


